package object_detection.protos

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message AdamOptimizer

optimizer.proto:37

Configuration message for the AdamOptimizer See: https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer

Used in: Optimizer

message AnchorGenerator

anchor_generator.proto:12

Configuration proto for the anchor generator to use in the object detection pipeline. See core/anchor_generator.py for details.

Used in: FasterRcnn, Ssd

message AnchorGrid

flexible_grid_anchor_generator.proto:12

Used in: FlexibleGridAnchorGenerator

message ArgMaxMatcher

argmax_matcher.proto:7

Configuration proto for ArgMaxMatcher. See matchers/argmax_matcher.py for details.

Used in: Matcher

message AutoAugmentImage

preprocessor.proto:492

Apply an Autoaugment policy to the image and bounding boxes.

Used in: PreprocessingStep

message BatchNonMaxSuppression

post_processing.proto:9

Configuration proto for non-max-suppression operation on a batch of detections.

Used in: PostProcessing

message BatchNorm

hyperparams.proto:122

Configuration proto for batch norm to apply after convolution op. See https://www.tensorflow.org/api_docs/python/tf/contrib/layers/batch_norm

Used in: Hyperparams

message BidirectionalFeaturePyramidNetworks

fpn.proto:33

Configuration for Bidirectional Feature Pyramid Networks.

Used in: SsdFeatureExtractor

message BipartiteMatcher

bipartite_matcher.proto:7

Configuration proto for bipartite matcher. See matchers/bipartite_matcher.py for details.

Used in: Matcher

message BootstrappedSigmoidClassificationLoss

losses.proto:157

Classification loss using a sigmoid function over the class prediction with the highest prediction score.

Used in: ClassificationLoss

message BoxCoder

box_coder.proto:12

Configuration proto for the box coder to be used in the object detection pipeline. See core/box_coder.py for details.

Used in: Ssd, TargetAssigner

message BoxPredictor

box_predictor.proto:8

Configuration proto for box predictor. See core/box_predictor.py for details.

Used in: FasterRcnn, Ssd

message CalibrationConfig

calibration.proto:10

Message wrapper for various calibration configurations.

Used in: PostProcessing

message CenterNet

center_net.proto:12

Used in: DetectionModel

message CenterNet.DensePoseEstimation

center_net.proto:192

Parameters which are related to DensePose estimation task. http://densepose.org/

Used in: CenterNet

message CenterNet.KeypointEstimation

center_net.proto:80

Parameters which are related to keypoint estimation task.

Used in: CenterNet

message CenterNet.MaskEstimation

center_net.proto:168

Parameters which are related to mask estimation task. Note: Currently, CenterNet supports a weak instance segmentation, where semantic segmentation masks are estimated, and then cropped based on bounding box detections. Therefore, it is possible for the same image pixel to be assigned to multiple instances.

Used in: CenterNet

message CenterNet.ObjectCenterParams

center_net.proto:47

Parameters related to object center prediction. This is required for both object detection and keypoint estimation tasks.

Used in: CenterNet

message CenterNet.ObjectDetection

center_net.proto:26

Parameters which are related to object detection task.

Used in: CenterNet

message CenterNet.TemporalOffsetEstimation

center_net.proto:256

Temporal offset prediction head similar to CenterTrack. Currently our implementation adopts LSTM, different from original paper. See go/lstd-centernet for more details. Tracking Objects as Points [3] [3]: https://arxiv.org/abs/2004.01177

Used in: CenterNet

message CenterNet.TrackEstimation

center_net.proto:228

Parameters which are related to tracking embedding estimation task. A Simple Baseline for Multi-Object Tracking [2] [2]: https://arxiv.org/abs/2004.01888

Used in: CenterNet

message CenterNetFeatureExtractor

center_net.proto:269

Used in: CenterNet

enum CheckpointVersion

train.proto:9

Used in: TrainConfig

message ClassIdFunctionApproximations

calibration.proto:39

Message for class-specific domain/range mapping for function approximations.

Used in: CalibrationConfig

message ClassIdSigmoidCalibrations

calibration.proto:51

Message for class-specific Sigmoid Calibration.

Used in: CalibrationConfig

message ClassificationLoss

losses.proto:105

Configuration for class prediction loss function.

Used in: CenterNet.MaskEstimation, CenterNet.ObjectCenterParams, CenterNet.TrackEstimation, FasterRcnn, Loss

message CocoKeypointMetrics

eval.proto:128

A message to evaluate COCO keypoint metrics for a specific class.

Used in: ParameterizedMetric

message ConditionalShapeResizer

image_resizer.proto:70

Configuration proto for image resizer that resizes only if input image height or width is greater or smaller than a certain size. Aspect ratio is maintained.

Used in: ImageResizer

enum ConditionalShapeResizer.ResizeCondition

image_resizer.proto:73

Enumeration for the condition on which to resize an image.

Used in: ConditionalShapeResizer

message ConstantLearningRate

optimizer.proto:57

Configuration message for a constant learning rate.

Used in: LearningRate

message Context

faster_rcnn.proto:187

Configuration proto for Context . Next id: 4

Used in: FasterRcnn

message ConvertClassLogitsToSoftmax

preprocessor.proto:478

Converts class logits to softmax optionally scaling the values by temperature first.

Used in: PreprocessingStep

message ConvolutionalBoxPredictor

box_predictor.proto:20

Configuration proto for Convolutional box predictor. Next id: 13

Used in: BoxPredictor

message ConvolutionalBoxPredictor.BoxEncodingsClipRange

box_predictor.proto:61

If specified, apply clipping to box encodings.

Used in: ConvolutionalBoxPredictor

message CosineDecayLearningRate

optimizer.proto:90

Configuration message for a cosine decaying learning rate as defined in object_detection/utils/learning_schedules.py

Used in: LearningRate

message DetectionModel

model.proto:10

Top level configuration for DetectionModels.

Used in: TrainEvalPipelineConfig

message DropLabelProbabilistically

preprocessor.proto:498

Randomly drops ground truth boxes for a label with some probability.

Used in: PreprocessingStep

message EvalConfig

eval.proto:7

Message for configuring DetectionModel evaluation jobs (eval.py). Next id - 35

Used in: TrainEvalPipelineConfig

message ExperimentalModel

model.proto:25

Used in: DetectionModel

message ExponentialDecayLearningRate

optimizer.proto:64

Configuration message for an exponentially decaying learning rate. See https://www.tensorflow.org/versions/master/api_docs/python/train/ \ decaying_the_learning_rate#exponential_decay

Used in: LearningRate

message ExternalInputReader

input_reader.proto:177

An externally defined input reader. Users may define an extension to this proto to interface their own input readers.

Used in: InputReader

(message has no fields)

message FasterRcnn

faster_rcnn.proto:21

Configuration for Faster R-CNN models. See meta_architectures/faster_rcnn_meta_arch.py and models/model_builder.py Naming conventions: Faster R-CNN models have two stages: a first stage region proposal network (or RPN) and a second stage box classifier. We thus use the prefixes `first_stage_` and `second_stage_` to indicate the stage to which each parameter pertains when relevant.

Used in: DetectionModel

message FasterRcnnBoxCoder

faster_rcnn_box_coder.proto:7

Configuration proto for FasterRCNNBoxCoder. See box_coders/faster_rcnn_box_coder.py for details.

Used in: BoxCoder

message FasterRcnnFeatureExtractor

faster_rcnn.proto:204

Used in: FasterRcnn

message FeaturePyramidNetworks

fpn.proto:6

Configuration for Feature Pyramid Networks.

We recommend to use multi_resolution_feature_map_generator with FPN, and the levels there must match the levels defined below for better performance. Correspondence from FPN levels to Resnet/Mobilenet V1 feature maps: FPN Level Resnet Feature Map Mobilenet-V1 Feature Map 2 Block 1 Conv2d_3_pointwise 3 Block 2 Conv2d_5_pointwise 4 Block 3 Conv2d_11_pointwise 5 Block 4 Conv2d_13_pointwise 6 Bottomup_5 bottom_up_Conv2d_14 7 Bottomup_6 bottom_up_Conv2d_15 8 Bottomup_7 bottom_up_Conv2d_16 9 Bottomup_8 bottom_up_Conv2d_17

Used in: FasterRcnnFeatureExtractor, SsdFeatureExtractor

message FixedShapeResizer

image_resizer.proto:53

Configuration proto for image resizer that resizes to a fixed shape.

Used in: ImageResizer

message FlexibleGridAnchorGenerator

flexible_grid_anchor_generator.proto:5

Used in: AnchorGenerator

message FunctionApproximation

calibration.proto:32

Message for class-agnostic domain/range mapping for function approximations.

Used in: CalibrationConfig

message GraphRewriter

graph_rewriter.proto:6

Message to configure graph rewriter for the tf graph.

Used in: TrainEvalPipelineConfig

message GridAnchorGenerator

grid_anchor_generator.proto:7

Configuration proto for GridAnchorGenerator. See anchor_generators/grid_anchor_generator.py for details.

Used in: AnchorGenerator

message GroupNorm

hyperparams.proto:135

Configuration proto for group normalization to apply after convolution op. https://arxiv.org/abs/1803.08494

Used in: Hyperparams

(message has no fields)

message HardExampleMiner

losses.proto:183

Configuration for hard example miner.

Used in: FasterRcnn, Loss

enum HardExampleMiner.LossType

losses.proto:195

Whether to use classification losses ('cls', default), localization losses ('loc') or both losses ('both'). In the case of 'both', cls_loss_weight and loc_loss_weight are used to compute weighted sum of the two losses.

Used in: HardExampleMiner

message Hyperparams

hyperparams.proto:7

Configuration proto for the convolution op hyperparameters to use in the object detection pipeline.

Used in: ConvolutionalBoxPredictor, FasterRcnn, FasterRcnnFeatureExtractor, MaskRCNNBoxPredictor, RfcnBoxPredictor, Ssd.MaskHead, SsdFeatureExtractor, WeightSharedConvolutionalBoxPredictor

enum Hyperparams.Activation

hyperparams.proto:26

Type of activation to apply after convolution.

Used in: Hyperparams

enum Hyperparams.Op

hyperparams.proto:10

Operations affected by hyperparameters.

Used in: Hyperparams

message IdentityResizer

image_resizer.proto:25

Used in: ImageResizer

(message has no fields)

message ImageResizer

image_resizer.proto:7

Configuration proto for image resizing operations. See builders/image_resizer_builder.py for details.

Used in: CenterNet, FasterRcnn, Ssd

message Initializer

hyperparams.proto:84

Proto with one-of field for initializers.

Used in: Hyperparams

message InputReader

input_reader.proto:34

Next id: 35

Used in: TrainEvalPipelineConfig

enum InputType

input_reader.proto:27

Input type format: whether inputs are TfExamples or TfSequenceExamples.

Used in: InputReader

enum InstanceMaskType

input_reader.proto:20

Instance mask format. Note that PNG masks are much more space efficient.

Used in: InputReader

message IoaSimilarity

region_similarity_calculator.proto:25

Configuration for intersection-over-area (IOA) similarity calculator.

Used in: RegionSimilarityCalculator

(message has no fields)

message IouSimilarity

region_similarity_calculator.proto:21

Configuration for intersection-over-union (IOU) similarity calculator.

Used in: RegionSimilarityCalculator

(message has no fields)

message KeepAspectRatioResizer

image_resizer.proto:29

Configuration proto for image resizer that keeps aspect ratio.

Used in: ImageResizer

message KeypointBoxCoder

keypoint_box_coder.proto:7

Configuration proto for KeypointBoxCoder. See box_coders/keypoint_box_coder.py for details.

Used in: BoxCoder

message KeypointEdge

eval.proto:158

Defines an edge that should be drawn between two keypoints.

Used in: EvalConfig

message L1LocalizationLoss

losses.proto:101

L1 Localization Loss.

Used in: LocalizationLoss

(message has no fields)

message L1Regularizer

hyperparams.proto:73

Configuration proto for L1 Regularizer. See https://www.tensorflow.org/api_docs/python/tf/contrib/layers/l1_regularizer

Used in: Regularizer

message L2Regularizer

hyperparams.proto:79

Configuration proto for L2 Regularizer. See https://www.tensorflow.org/api_docs/python/tf/contrib/layers/l2_regularizer

Used in: Regularizer

message LearningRate

optimizer.proto:47

Configuration message for optimizer learning rate.

Used in: AdamOptimizer, MomentumOptimizer, RMSPropOptimizer

message LocalizationLoss

losses.proto:67

Configuration for bounding box localization loss function.

Used in: CenterNet.ObjectDetection, CenterNet.TemporalOffsetEstimation, Loss

message Loss

losses.proto:8

Message for configuring the localization loss, classification loss and hard example miner used for training object detection models. See core/losses.py for details

Used in: CenterNet.DensePoseEstimation, CenterNet.KeypointEstimation, Ssd

message Loss.EqualizationLoss

losses.proto:28

Equalization loss.

Used in: Loss

enum Loss.ExpectedLossWeights

losses.proto:40

Used in: Loss

message ManualStepLearningRate

optimizer.proto:75

Configuration message for a manually defined learning rate schedule.

Used in: LearningRate

message ManualStepLearningRate.LearningRateSchedule

optimizer.proto:77

Used in: ManualStepLearningRate

message MaskRCNNBoxPredictor

box_predictor.proto:132

TODO(alirezafathi): Refactor the proto file to be able to configure mask rcnn head easily. Next id: 15

Used in: BoxPredictor

message Matcher

matcher.proto:10

Configuration proto for the matcher to be used in the object detection pipeline. See core/matcher.py for details.

Used in: Ssd, TargetAssigner

message MeanStddevBoxCoder

mean_stddev_box_coder.proto:7

Configuration proto for MeanStddevBoxCoder. See box_coders/mean_stddev_box_coder.py for details.

Used in: BoxCoder

message MomentumOptimizer

optimizer.proto:30

Configuration message for the MomentumOptimizer See: https://www.tensorflow.org/api_docs/python/tf/train/MomentumOptimizer

Used in: Optimizer

message MultiscaleAnchorGenerator

multiscale_anchor_generator.proto:8

Configuration proto for RetinaNet anchor generator described in https://arxiv.org/abs/1708.02002. See anchor_generators/multiscale_grid_anchor_generator.py for details.

Used in: AnchorGenerator

message NegSqDistSimilarity

region_similarity_calculator.proto:17

Configuration for negative squared distance similarity calculator.

Used in: RegionSimilarityCalculator

(message has no fields)

message NormalizeImage

preprocessor.proto:54

Normalizes pixel values in an image. For every channel in the image, moves the pixel values from the range [original_minval, original_maxval] to [target_minval, target_maxval].

Used in: PreprocessingStep

message Optimizer

optimizer.proto:9

Top level optimizer message.

Used in: TrainConfig

message PadToMultipleResizer

image_resizer.proto:100

An image resizer which resizes inputs by zero padding them such that their spatial dimensions are divisible by a specified multiple. This is useful when you want to concatenate or compare the input to an output of a fully convolutional network.

Used in: ImageResizer

message ParameterizedMetric

eval.proto:121

A message to configure parameterized evaluation metric.

Used in: EvalConfig

message PenaltyReducedLogisticFocalLoss

losses.proto:173

Pixelwise logistic focal loss with pixels near the target having a reduced penalty.

Used in: ClassificationLoss

message PostProcessing

post_processing.proto:70

Configuration proto for post-processing predicted boxes and scores.

Used in: FasterRcnn, Ssd

enum PostProcessing.ScoreConverter

post_processing.proto:75

Enum to specify how to convert the detection scores.

Used in: PostProcessing

message PreprocessingStep

preprocessor.proto:8

Message for defining a preprocessing operation on input data. See: //third_party/tensorflow_models/object_detection/core/preprocessor.py Next ID: 39

Used in: TrainConfig

message Quantization

graph_rewriter.proto:13

Message for quantization options. See tensorflow/contrib/quantize/python/quantize.py for details.

Used in: GraphRewriter

message RGBtoGray

preprocessor.proto:294

Converts the RGB image to a grayscale image. This also converts the image depth from 3 to 1, unlike RandomRGBtoGray which does not change the image depth.

Used in: PreprocessingStep

(message has no fields)

message RMSPropOptimizer

optimizer.proto:21

Configuration message for the RMSPropOptimizer See: https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer

Used in: Optimizer

message RandomAbsolutePadImage

preprocessor.proto:212

Randomly adds a padding of size [0, max_height_padding), [0, max_width_padding).

Used in: PreprocessingStep

message RandomAdjustBrightness

preprocessor.proto:137

Randomly changes image brightness by up to max_delta. Image outputs will be saturated between 0 and 1.

Used in: PreprocessingStep

message RandomAdjustContrast

preprocessor.proto:142

Randomly scales contract by a value between [min_delta, max_delta].

Used in: PreprocessingStep

message RandomAdjustHue

preprocessor.proto:148

Randomly alters hue by a value of up to max_delta.

Used in: PreprocessingStep

message RandomAdjustSaturation

preprocessor.proto:153

Randomly changes saturation by a value between [min_delta, max_delta].

Used in: PreprocessingStep

message RandomBlackPatches

preprocessor.proto:273

Randomly adds black square patches to an image.

Used in: PreprocessingStep

message RandomCropImage

preprocessor.proto:170

Randomly crops the image and bounding boxes.

Used in: PreprocessingStep

message RandomCropPadImage

preprocessor.proto:224

Randomly crops an image followed by a random pad.

Used in: PreprocessingStep

message RandomCropToAspectRatio

preprocessor.proto:259

Randomly crops an iamge to a given aspect ratio.

Used in: PreprocessingStep

message RandomDistortColor

preprocessor.proto:159

Performs a random color distortion. color_orderings should either be 0 or 1.

Used in: PreprocessingStep

message RandomDownscaleToTargetPixels

preprocessor.proto:529

Randomly shrinks image (keeping aspect ratio) to a target number of pixels. If the image contains less than the chosen target number of pixels, it will not be changed.

Used in: PreprocessingStep

message RandomExampleSampler

losses.proto:215

Configuration for random example sampler.

Used in: Loss

message RandomHorizontalFlip

preprocessor.proto:63

Randomly horizontally flips the image and detections with the specified probability, default to 50% of the time.

Used in: PreprocessingStep

message RandomImageScale

preprocessor.proto:125

Randomly enlarges or shrinks image (keeping aspect ratio).

Used in: PreprocessingStep

message RandomJitterBoxes

preprocessor.proto:165

Randomly jitters corners of boxes in the image determined by ratio. ie. If a box is [100, 200] and ratio is 0.02, the corners can move by [1, 4].

Used in: PreprocessingStep

message RandomJpegQuality

preprocessor.proto:515

Applies a jpeg encoding with a random quality factor.

Used in: PreprocessingStep

message RandomNormalInitializer

hyperparams.proto:115

Configuration proto for random normal initializer. See https://www.tensorflow.org/api_docs/python/tf/random_normal_initializer

Used in: Initializer

message RandomPadImage

preprocessor.proto:195

Randomly adds padding to the image.

Used in: PreprocessingStep

message RandomPatchGaussian

preprocessor.proto:539

Used in: PreprocessingStep

message RandomPixelValueScale

preprocessor.proto:119

Randomly scales the values of all pixels in the image by some constant value between [minval, maxval], then clip the value to a range between [0, 1.0].

Used in: PreprocessingStep

message RandomRGBtoGray

preprocessor.proto:131

Randomly convert entire image to grey scale.

Used in: PreprocessingStep

message RandomResizeMethod

preprocessor.proto:286

Randomly resizes the image up to [target_height, target_width].

Used in: PreprocessingStep

message RandomRotation90

preprocessor.proto:106

Randomly rotates the image and detections by 90 degrees counter-clockwise with the specified probability, default to 50% of the time.

Used in: PreprocessingStep

message RandomScaleCropAndPadToSquare

preprocessor.proto:585

Randomly scale, crop, and then pad an image to the desired square output dimensions. Specifically, this method first samples a random_scale factor from a uniform distribution between scale_min and scale_max, and then resizes the image such that it's maximum dimension is (output_size * random_scale). Secondly, a square output_size crop is extracted from the resized image, and finally the cropped region is padded to the desired square output_size. The augmentation is borrowed from [1] [1]: https://arxiv.org/abs/1911.09070

Used in: PreprocessingStep

message RandomSelfConcatImage

preprocessor.proto:484

Randomly concatenates the image with itself horizontally and/or vertically.

Used in: PreprocessingStep

message RandomSquareCropByScale

preprocessor.proto:559

Extract a square sized crop from an image whose side length is sampled by randomly scaling the maximum spatial dimension of the image. If part of the crop falls outside the image, it is filled with zeros. The augmentation is borrowed from [1] [1]: https://arxiv.org/abs/1904.07850

Used in: PreprocessingStep

message RandomVerticalFlip

preprocessor.proto:85

Randomly vertically flips the image and detections with the specified probability, default to 50% of the time.

Used in: PreprocessingStep

message RegionSimilarityCalculator

region_similarity_calculator.proto:7

Configuration proto for region similarity calculators. See core/region_similarity_calculator.py for details.

Used in: Ssd, TargetAssigner

message Regularizer

hyperparams.proto:64

Proto with one-of field for regularizers.

Used in: Hyperparams

message RemapLabels

preprocessor.proto:507

Remap a set of labels to a new label.

Used in: PreprocessingStep

message ResizeImage

preprocessor.proto:301

Resizes images to [new_height, new_width].

Used in: PreprocessingStep

enum ResizeImage.Method

preprocessor.proto:304

Used in: ResizeImage

enum ResizeType

image_resizer.proto:18

Enumeration type for image resizing methods provided in TensorFlow.

Used in: ConditionalShapeResizer, FixedShapeResizer, KeepAspectRatioResizer

message RfcnBoxPredictor

box_predictor.proto:180

Used in: BoxPredictor

message SSDRandomCrop

preprocessor.proto:349

Randomly crops a image according to: Liu et al., SSD: Single shot multibox detector. This preprocessing step defines multiple SSDRandomCropOperations. Only one operation (chosen at random) is actually performed on an image.

Used in: PreprocessingStep

message SSDRandomCropFixedAspectRatio

preprocessor.proto:424

Randomly crops a image to a fixed aspect ratio according to: Liu et al., SSD: Single shot multibox detector. Multiple SSDRandomCropFixedAspectRatioOperations are defined by this preprocessing step. Only one operation (chosen at random) is actually performed on an image.

Used in: PreprocessingStep

message SSDRandomCropFixedAspectRatioOperation

preprocessor.proto:399

Used in: SSDRandomCropFixedAspectRatio

message SSDRandomCropOperation

preprocessor.proto:320

Used in: SSDRandomCrop

message SSDRandomCropPad

preprocessor.proto:395

Randomly crops and pads an image according to: Liu et al., SSD: Single shot multibox detector. This preprocessing step defines multiple SSDRandomCropPadOperations. Only one operation (chosen at random) is actually performed on an image.

Used in: PreprocessingStep

message SSDRandomCropPadFixedAspectRatio

preprocessor.proto:461

Randomly crops and pads an image to a fixed aspect ratio according to: Liu et al., SSD: Single shot multibox detector. Multiple SSDRandomCropPadFixedAspectRatioOperations are defined by this preprocessing step. Only one operation (chosen at random) is actually performed on an image.

Used in: PreprocessingStep

message SSDRandomCropPadFixedAspectRatioOperation

preprocessor.proto:431

Used in: SSDRandomCropPadFixedAspectRatio

message SSDRandomCropPadOperation

preprocessor.proto:353

Used in: SSDRandomCropPad

message ScaleBoxesToPixelCoordinates

preprocessor.proto:297

Scales boxes from normalized coordinates to pixel coordinates.

Used in: PreprocessingStep

(message has no fields)

message SigmoidCalibration

calibration.proto:45

Message for class-agnostic Sigmoid Calibration.

Used in: CalibrationConfig

message SigmoidFocalClassificationLoss

losses.proto:125

Sigmoid Focal cross entropy loss as described in https://arxiv.org/abs/1708.02002

Used in: ClassificationLoss

message SigmoidParameters

calibration.proto:87

Message defining parameters for sigmoid calibration.

Used in: ClassIdSigmoidCalibrations, SigmoidCalibration

message SquareBoxCoder

square_box_coder.proto:7

Configuration proto for SquareBoxCoder. See box_coders/square_box_coder.py for details.

Used in: BoxCoder

message Ssd

ssd.proto:18

Configuration for Single Shot Detection (SSD) models. Next id: 27

Used in: DetectionModel

message Ssd.MaskHead

ssd.proto:104

Configuration proto for MaskHead. Next id: 11

Used in: Ssd

message SsdAnchorGenerator

ssd_anchor_generator.proto:8

Configuration proto for SSD anchor generator described in https://arxiv.org/abs/1512.02325. See anchor_generators/multiple_grid_anchor_generator.py for details.

Used in: AnchorGenerator

message SsdFeatureExtractor

ssd.proto:150

Next id: 20.

Used in: Ssd

message StringIntLabelMap

string_int_label_map.proto:43

message StringIntLabelMapItem

string_int_label_map.proto:9

Used in: StringIntLabelMap

message StringIntLabelMapItem.KeypointMap

string_int_label_map.proto:23

Name of class specific keypoints for each class object and their respective keypoint IDs.

Used in: StringIntLabelMapItem

message SubtractChannelMean

preprocessor.proto:314

Normalizes an image by subtracting a mean from each channel.

Used in: PreprocessingStep

message TFRecordInputReader

input_reader.proto:170

An input reader that reads TF Example or TF Sequence Example protos from local TFRecord files.

Used in: InputReader

message TargetAssigner

target_assigner.proto:10

Message to configure Target Assigner for object detectors.

message TemperatureScalingCalibration

calibration.proto:57

Message for Temperature Scaling Calibration.

Used in: CalibrationConfig

message ThresholdedIouSimilarity

region_similarity_calculator.proto:29

Configuration for thresholded-intersection-over-union similarity calculator.

Used in: RegionSimilarityCalculator

message TrainConfig

train.proto:18

Message for configuring DetectionModel training jobs (train.py). Next id: 30

Used in: TrainEvalPipelineConfig

message TrainEvalPipelineConfig

pipeline.proto:14

Convenience message for configuring a training and eval pipeline. Allows all of the pipeline parameters to be configured from one file. Next id: 8

enum TrainingDataType

calibration.proto:66

Description of data used to fit the calibration model. CLASS_SPECIFIC indicates that the calibration parameters are derived from detections pertaining to a single class. ALL_CLASSES indicates that parameters were obtained by fitting a model on detections from all classes (including the background class).

Used in: XYPairs

message TruncatedNormalInitializer

hyperparams.proto:94

Configuration proto for truncated normal initializer. See https://www.tensorflow.org/api_docs/python/tf/truncated_normal_initializer

Used in: Initializer

message VarianceScalingInitializer

hyperparams.proto:102

Configuration proto for variance scaling initializer. See https://www.tensorflow.org/api_docs/python/tf/contrib/layers/ variance_scaling_initializer

Used in: Initializer

enum VarianceScalingInitializer.Mode

hyperparams.proto:105

Used in: VarianceScalingInitializer

message WeightSharedConvolutionalBoxPredictor

box_predictor.proto:70

Configuration proto for weight shared convolutional box predictor. Next id: 19

Used in: BoxPredictor

message WeightSharedConvolutionalBoxPredictor.BoxEncodingsClipRange

box_predictor.proto:120

If specified, apply clipping to box encodings.

Used in: WeightSharedConvolutionalBoxPredictor

enum WeightSharedConvolutionalBoxPredictor.ScoreConverter

box_predictor.proto:108

Enum to specify how to convert the detection scores at inference time.

Used in: WeightSharedConvolutionalBoxPredictor

message WeightedIOULocalizationLoss

losses.proto:97

Intersection over union location loss: 1 - IOU

Used in: LocalizationLoss

(message has no fields)

message WeightedL2LocalizationLoss

losses.proto:77

L2 location loss: 0.5 * ||weight * (a - b)|| ^ 2

Used in: LocalizationLoss

message WeightedSigmoidClassificationLoss

losses.proto:117

Classification loss using a sigmoid function over class predictions.

Used in: ClassificationLoss

message WeightedSmoothL1LocalizationLoss

losses.proto:87

SmoothL1 (Huber) location loss. The smooth L1_loss is defined elementwise as .5 x^2 if |x| <= delta and delta * (|x|-0.5*delta) otherwise, where x is the difference between predictions and target.

Used in: LocalizationLoss

message WeightedSoftmaxClassificationAgainstLogitsLoss

losses.proto:146

Classification loss using a softmax function over class predictions and a softmax function over the groundtruth labels (assumed to be logits).

Used in: ClassificationLoss

message WeightedSoftmaxClassificationLoss

losses.proto:135

Classification loss using a softmax function over class predictions.

Used in: ClassificationLoss

message XYPairs

calibration.proto:73

Message to store a domain/range pair for function to be approximated.

Used in: ClassIdFunctionApproximations, FunctionApproximation

message XYPairs.XYPair

calibration.proto:74

Used in: XYPairs