package object_detection.protos

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message AdamOptimizer

optimizer.proto:37

Configuration message for the AdamOptimizer See: https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer

Used in: Optimizer

message AnchorGenerator

anchor_generator.proto:11

Configuration proto for the anchor generator to use in the object detection pipeline. See core/anchor_generator.py for details.

Used in: FasterRcnn, Ssd

message ArgMaxMatcher

argmax_matcher.proto:7

Configuration proto for ArgMaxMatcher. See matchers/argmax_matcher.py for details.

Used in: Matcher

message BatchNonMaxSuppression

post_processing.proto:7

Configuration proto for non-max-suppression operation on a batch of detections.

Used in: PostProcessing

message BatchNorm

hyperparams.proto:113

Configuration proto for batch norm to apply after convolution op. See https://www.tensorflow.org/api_docs/python/tf/contrib/layers/batch_norm

Used in: Hyperparams

message BipartiteMatcher

bipartite_matcher.proto:7

Configuration proto for bipartite matcher. See matchers/bipartite_matcher.py for details.

Used in: Matcher

message BootstrappedSigmoidClassificationLoss

losses.proto:151

Classification loss using a sigmoid function over the class prediction with the highest prediction score.

Used in: ClassificationLoss

message BoxCoder

box_coder.proto:12

Configuration proto for the box coder to be used in the object detection pipeline. See core/box_coder.py for details.

Used in: Ssd

message BoxPredictor

box_predictor.proto:8

Configuration proto for box predictor. See core/box_predictor.py for details.

Used in: FasterRcnn, Ssd

message ClassificationLoss

losses.proto:100

Configuration for class prediction loss function.

Used in: FasterRcnn, Loss

message ConstantLearningRate

optimizer.proto:52

Configuration message for a constant learning rate.

Used in: LearningRate

message ConvertClassLogitsToSoftmax

preprocessor.proto:437

Converts class logits to softmax optionally scaling the values by temperature first.

Used in: PreprocessingStep

message ConvolutionalBoxPredictor

box_predictor.proto:21

Configuration proto for Convolutional box predictor. Next id: 13

Used in: BoxPredictor

message CosineDecayLearningRate

optimizer.proto:85

Configuration message for a cosine decaying learning rate as defined in object_detection/utils/learning_schedules.py

Used in: LearningRate

message DetectionModel

model.proto:9

Top level configuration for DetectionModels.

Used in: TrainEvalPipelineConfig

message EvalConfig

eval.proto:6

Message for configuring DetectionModel evaluation jobs (eval.py).

Used in: TrainEvalPipelineConfig

message ExponentialDecayLearningRate

optimizer.proto:59

Configuration message for an exponentially decaying learning rate. See https://www.tensorflow.org/versions/master/api_docs/python/train/ \ decaying_the_learning_rate#exponential_decay

Used in: LearningRate

message ExternalInputReader

input_reader.proto:121

An externally defined input reader. Users may define an extension to this proto to interface their own input readers.

Used in: InputReader

(message has no fields)

message FasterRcnn

faster_rcnn.proto:20

Configuration for Faster R-CNN models. See meta_architectures/faster_rcnn_meta_arch.py and models/model_builder.py Naming conventions: Faster R-CNN models have two stages: a first stage region proposal network (or RPN) and a second stage box classifier. We thus use the prefixes `first_stage_` and `second_stage_` to indicate the stage to which each parameter pertains when relevant.

Used in: DetectionModel

message FasterRcnnBoxCoder

faster_rcnn_box_coder.proto:7

Configuration proto for FasterRCNNBoxCoder. See box_coders/faster_rcnn_box_coder.py for details.

Used in: BoxCoder

message FasterRcnnFeatureExtractor

faster_rcnn.proto:174

Used in: FasterRcnn

message FeaturePyramidNetworks

ssd.proto:190

Configuration for Feature Pyramid Networks.

We recommend to use multi_resolution_feature_map_generator with FPN, and the levels there must match the levels defined below for better performance. Correspondence from FPN levels to Resnet/Mobilenet V1 feature maps: FPN Level Resnet Feature Map Mobilenet-V1 Feature Map 2 Block 1 Conv2d_3_pointwise 3 Block 2 Conv2d_5_pointwise 4 Block 3 Conv2d_11_pointwise 5 Block 4 Conv2d_13_pointwise 6 Bottomup_5 bottom_up_Conv2d_14 7 Bottomup_6 bottom_up_Conv2d_15 8 Bottomup_7 bottom_up_Conv2d_16 9 Bottomup_8 bottom_up_Conv2d_17

Used in: SsdFeatureExtractor

message FixedShapeResizer

image_resizer.proto:47

Configuration proto for image resizer that resizes to a fixed shape.

Used in: ImageResizer

message GraphRewriter

graph_rewriter.proto:6

Message to configure graph rewriter for the tf graph.

Used in: TrainEvalPipelineConfig

message GridAnchorGenerator

grid_anchor_generator.proto:7

Configuration proto for GridAnchorGenerator. See anchor_generators/grid_anchor_generator.py for details.

Used in: AnchorGenerator

message GroupNorm

hyperparams.proto:126

Configuration proto for group normalization to apply after convolution op. https://arxiv.org/abs/1803.08494

Used in: Hyperparams

(message has no fields)

message HardExampleMiner

losses.proto:166

Configuration for hard example miner.

Used in: FasterRcnn, Loss

enum HardExampleMiner.LossType

losses.proto:178

Whether to use classification losses ('cls', default), localization losses ('loc') or both losses ('both'). In the case of 'both', cls_loss_weight and loc_loss_weight are used to compute weighted sum of the two losses.

Used in: HardExampleMiner

message Hyperparams

hyperparams.proto:7

Configuration proto for the convolution op hyperparameters to use in the object detection pipeline.

Used in: ConvolutionalBoxPredictor, FasterRcnn, MaskRCNNBoxPredictor, RfcnBoxPredictor, Ssd.MaskHead, SsdFeatureExtractor, WeightSharedConvolutionalBoxPredictor

enum Hyperparams.Activation

hyperparams.proto:26

Type of activation to apply after convolution.

Used in: Hyperparams

enum Hyperparams.Op

hyperparams.proto:10

Operations affected by hyperparameters.

Used in: Hyperparams

message ImageResizer

image_resizer.proto:7

Configuration proto for image resizing operations. See builders/image_resizer_builder.py for details.

Used in: FasterRcnn, Ssd

message Initializer

hyperparams.proto:75

Proto with one-of field for initializers.

Used in: Hyperparams

message InputReader

input_reader.proto:26

Next id: 24

Used in: TrainEvalPipelineConfig

enum InstanceMaskType

input_reader.proto:19

Instance mask format. Note that PNG masks are much more space efficient.

Used in: InputReader

message IoaSimilarity

region_similarity_calculator.proto:25

Configuration for intersection-over-area (IOA) similarity calculator.

Used in: RegionSimilarityCalculator

(message has no fields)

message IouSimilarity

region_similarity_calculator.proto:21

Configuration for intersection-over-union (IOU) similarity calculator.

Used in: RegionSimilarityCalculator

(message has no fields)

message KeepAspectRatioResizer

image_resizer.proto:23

Configuration proto for image resizer that keeps aspect ratio.

Used in: ImageResizer

message KeypointBoxCoder

keypoint_box_coder.proto:7

Configuration proto for KeypointBoxCoder. See box_coders/keypoint_box_coder.py for details.

Used in: BoxCoder

message L1Regularizer

hyperparams.proto:64

Configuration proto for L1 Regularizer. See https://www.tensorflow.org/api_docs/python/tf/contrib/layers/l1_regularizer

Used in: Regularizer

message L2Regularizer

hyperparams.proto:70

Configuration proto for L2 Regularizer. See https://www.tensorflow.org/api_docs/python/tf/contrib/layers/l2_regularizer

Used in: Regularizer

message LearningRate

optimizer.proto:42

Configuration message for optimizer learning rate.

Used in: AdamOptimizer, MomentumOptimizer, RMSPropOptimizer

message LocalizationLoss

losses.proto:67

Configuration for bounding box localization loss function.

Used in: Loss

message Loss

losses.proto:8

Message for configuring the localization loss, classification loss and hard example miner used for training object detection models. See core/losses.py for details

Used in: Ssd

message Loss.EqualizationLoss

losses.proto:28

Equalization loss.

Used in: Loss

enum Loss.ExpectedLossWeights

losses.proto:40

Used in: Loss

message ManualStepLearningRate

optimizer.proto:70

Configuration message for a manually defined learning rate schedule.

Used in: LearningRate

message ManualStepLearningRate.LearningRateSchedule

optimizer.proto:72

Used in: ManualStepLearningRate

message MaskRCNNBoxPredictor

box_predictor.proto:124

TODO(alirezafathi): Refactor the proto file to be able to configure mask rcnn head easily. Next id: 15

Used in: BoxPredictor

message Matcher

matcher.proto:10

Configuration proto for the matcher to be used in the object detection pipeline. See core/matcher.py for details.

Used in: Ssd

message MeanStddevBoxCoder

mean_stddev_box_coder.proto:7

Configuration proto for MeanStddevBoxCoder. See box_coders/mean_stddev_box_coder.py for details.

Used in: BoxCoder

message MomentumOptimizer

optimizer.proto:30

Configuration message for the MomentumOptimizer See: https://www.tensorflow.org/api_docs/python/tf/train/MomentumOptimizer

Used in: Optimizer

message MultiscaleAnchorGenerator

multiscale_anchor_generator.proto:8

Configuration proto for RetinaNet anchor generator described in https://arxiv.org/abs/1708.02002. See anchor_generators/multiscale_grid_anchor_generator.py for details.

Used in: AnchorGenerator

message NegSqDistSimilarity

region_similarity_calculator.proto:17

Configuration for negative squared distance similarity calculator.

Used in: RegionSimilarityCalculator

(message has no fields)

message NormalizeImage

preprocessor.proto:43

Normalizes pixel values in an image. For every channel in the image, moves the pixel values from the range [original_minval, original_maxval] to [target_minval, target_maxval].

Used in: PreprocessingStep

message Optimizer

optimizer.proto:9

Top level optimizer message.

Used in: TrainConfig

message PostProcessing

post_processing.proto:27

Configuration proto for post-processing predicted boxes and scores.

Used in: FasterRcnn, Ssd

enum PostProcessing.ScoreConverter

post_processing.proto:32

Enum to specify how to convert the detection scores.

Used in: PostProcessing

message PreprocessingStep

preprocessor.proto:7

Message for defining a preprocessing operation on input data. See: //third_party/tensorflow_models/object_detection/core/preprocessor.py

Used in: TrainConfig

message Quantization

graph_rewriter.proto:12

Message for quantization options. See tensorflow/contrib/quantize/python/quantize.py for details.

Used in: GraphRewriter

message RGBtoGray

preprocessor.proto:253

Converts the RGB image to a grayscale image. This also converts the image depth from 3 to 1, unlike RandomRGBtoGray which does not change the image depth.

Used in: PreprocessingStep

(message has no fields)

message RMSPropOptimizer

optimizer.proto:21

Configuration message for the RMSPropOptimizer See: https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer

Used in: Optimizer

message RandomAdjustBrightness

preprocessor.proto:108

Randomly changes image brightness by up to max_delta. Image outputs will be saturated between 0 and 1.

Used in: PreprocessingStep

message RandomAdjustContrast

preprocessor.proto:113

Randomly scales contract by a value between [min_delta, max_delta].

Used in: PreprocessingStep

message RandomAdjustHue

preprocessor.proto:119

Randomly alters hue by a value of up to max_delta.

Used in: PreprocessingStep

message RandomAdjustSaturation

preprocessor.proto:124

Randomly changes saturation by a value between [min_delta, max_delta].

Used in: PreprocessingStep

message RandomBlackPatches

preprocessor.proto:232

Randomly adds black square patches to an image.

Used in: PreprocessingStep

message RandomCropImage

preprocessor.proto:141

Randomly crops the image and bounding boxes.

Used in: PreprocessingStep

message RandomCropPadImage

preprocessor.proto:183

Randomly crops an image followed by a random pad.

Used in: PreprocessingStep

message RandomCropToAspectRatio

preprocessor.proto:218

Randomly crops an iamge to a given aspect ratio.

Used in: PreprocessingStep

message RandomDistortColor

preprocessor.proto:130

Performs a random color distortion. color_orderings should either be 0 or 1.

Used in: PreprocessingStep

message RandomExampleSampler

losses.proto:198

Configuration for random example sampler.

Used in: Loss

message RandomHorizontalFlip

preprocessor.proto:51

Randomly horizontally flips the image and detections 50% of the time.

Used in: PreprocessingStep

message RandomImageScale

preprocessor.proto:96

Randomly enlarges or shrinks image (keeping aspect ratio).

Used in: PreprocessingStep

message RandomJitterBoxes

preprocessor.proto:136

Randomly jitters corners of boxes in the image determined by ratio. ie. If a box is [100, 200] and ratio is 0.02, the corners can move by [1, 4].

Used in: PreprocessingStep

message RandomNormalInitializer

hyperparams.proto:106

Configuration proto for random normal initializer. See https://www.tensorflow.org/api_docs/python/tf/random_normal_initializer

Used in: Initializer

message RandomPadImage

preprocessor.proto:166

Randomly adds padding to the image.

Used in: PreprocessingStep

message RandomPixelValueScale

preprocessor.proto:90

Randomly scales the values of all pixels in the image by some constant value between [minval, maxval], then clip the value to a range between [0, 1.0].

Used in: PreprocessingStep

message RandomRGBtoGray

preprocessor.proto:102

Randomly convert entire image to grey scale.

Used in: PreprocessingStep

message RandomResizeMethod

preprocessor.proto:245

Randomly resizes the image up to [target_height, target_width].

Used in: PreprocessingStep

message RandomRotation90

preprocessor.proto:86

Randomly rotates the image and detections by 90 degrees counter-clockwise 50% of the time.

Used in: PreprocessingStep

(message has no fields)

message RandomVerticalFlip

preprocessor.proto:68

Randomly vertically flips the image and detections 50% of the time.

Used in: PreprocessingStep

message RegionSimilarityCalculator

region_similarity_calculator.proto:7

Configuration proto for region similarity calculators. See core/region_similarity_calculator.py for details.

Used in: Ssd

message Regularizer

hyperparams.proto:55

Proto with one-of field for regularizers.

Used in: Hyperparams

message ResizeImage

preprocessor.proto:260

Resizes images to [new_height, new_width].

Used in: PreprocessingStep

enum ResizeImage.Method

preprocessor.proto:263

Used in: ResizeImage

enum ResizeType

image_resizer.proto:15

Enumeration type for image resizing methods provided in TensorFlow.

Used in: FixedShapeResizer, KeepAspectRatioResizer

message RfcnBoxPredictor

box_predictor.proto:172

Used in: BoxPredictor

message SSDRandomCrop

preprocessor.proto:308

Randomly crops a image according to: Liu et al., SSD: Single shot multibox detector. This preprocessing step defines multiple SSDRandomCropOperations. Only one operation (chosen at random) is actually performed on an image.

Used in: PreprocessingStep

message SSDRandomCropFixedAspectRatio

preprocessor.proto:383

Randomly crops a image to a fixed aspect ratio according to: Liu et al., SSD: Single shot multibox detector. Multiple SSDRandomCropFixedAspectRatioOperations are defined by this preprocessing step. Only one operation (chosen at random) is actually performed on an image.

Used in: PreprocessingStep

message SSDRandomCropFixedAspectRatioOperation

preprocessor.proto:358

Used in: SSDRandomCropFixedAspectRatio

message SSDRandomCropOperation

preprocessor.proto:279

Used in: SSDRandomCrop

message SSDRandomCropPad

preprocessor.proto:354

Randomly crops and pads an image according to: Liu et al., SSD: Single shot multibox detector. This preprocessing step defines multiple SSDRandomCropPadOperations. Only one operation (chosen at random) is actually performed on an image.

Used in: PreprocessingStep

message SSDRandomCropPadFixedAspectRatio

preprocessor.proto:420

Randomly crops and pads an image to a fixed aspect ratio according to: Liu et al., SSD: Single shot multibox detector. Multiple SSDRandomCropPadFixedAspectRatioOperations are defined by this preprocessing step. Only one operation (chosen at random) is actually performed on an image.

Used in: PreprocessingStep

message SSDRandomCropPadFixedAspectRatioOperation

preprocessor.proto:390

Used in: SSDRandomCropPadFixedAspectRatio

message SSDRandomCropPadOperation

preprocessor.proto:312

Used in: SSDRandomCropPad

message ScaleBoxesToPixelCoordinates

preprocessor.proto:256

Scales boxes from normalized coordinates to pixel coordinates.

Used in: PreprocessingStep

(message has no fields)

message SigmoidFocalClassificationLoss

losses.proto:119

Sigmoid Focal cross entropy loss as described in https://arxiv.org/abs/1708.02002

Used in: ClassificationLoss

message SquareBoxCoder

square_box_coder.proto:7

Configuration proto for SquareBoxCoder. See box_coders/square_box_coder.py for details.

Used in: BoxCoder

message Ssd

ssd.proto:16

Configuration for Single Shot Detection (SSD) models. Next id: 26

Used in: DetectionModel

message Ssd.MaskHead

ssd.proto:101

Configuration proto for MaskHead. Next id: 11

Used in: Ssd

message SsdAnchorGenerator

ssd_anchor_generator.proto:8

Configuration proto for SSD anchor generator described in https://arxiv.org/abs/1512.02325. See anchor_generators/multiple_grid_anchor_generator.py for details.

Used in: AnchorGenerator

message SsdFeatureExtractor

ssd.proto:146

Used in: Ssd

message StringIntLabelMap

string_int_label_map.proto:22

message StringIntLabelMapItem

string_int_label_map.proto:9

Used in: StringIntLabelMap

message SubtractChannelMean

preprocessor.proto:273

Normalizes an image by subtracting a mean from each channel.

Used in: PreprocessingStep

message TFRecordInputReader

input_reader.proto:114

An input reader that reads TF Example protos from local TFRecord files.

Used in: InputReader

message ThresholdedIouSimilarity

region_similarity_calculator.proto:29

Configuration for thresholded-intersection-over-union similarity calculator.

Used in: RegionSimilarityCalculator

message TrainConfig

train.proto:10

Message for configuring DetectionModel training jobs (train.py). Next id: 28

Used in: TrainEvalPipelineConfig

message TrainEvalPipelineConfig

pipeline.proto:14

Convenience message for configuring a training and eval pipeline. Allows all of the pipeline parameters to be configured from one file. Next id: 7

message TruncatedNormalInitializer

hyperparams.proto:85

Configuration proto for truncated normal initializer. See https://www.tensorflow.org/api_docs/python/tf/truncated_normal_initializer

Used in: Initializer

message VarianceScalingInitializer

hyperparams.proto:93

Configuration proto for variance scaling initializer. See https://www.tensorflow.org/api_docs/python/tf/contrib/layers/ variance_scaling_initializer

Used in: Initializer

enum VarianceScalingInitializer.Mode

hyperparams.proto:96

Used in: VarianceScalingInitializer

message WeightSharedConvolutionalBoxPredictor

box_predictor.proto:64

Configuration proto for weight shared convolutional box predictor. Next id: 18

Used in: BoxPredictor

message WeightSharedConvolutionalBoxPredictor.BoxEncodingsClipRange

box_predictor.proto:114

If specified, apply clipping to box encodings.

Used in: WeightSharedConvolutionalBoxPredictor

enum WeightSharedConvolutionalBoxPredictor.ScoreConverter

box_predictor.proto:102

Enum to specify how to convert the detection scores at inference time.

Used in: WeightSharedConvolutionalBoxPredictor

message WeightedIOULocalizationLoss

losses.proto:96

Intersection over union location loss: 1 - IOU

Used in: LocalizationLoss

(message has no fields)

message WeightedL2LocalizationLoss

losses.proto:76

L2 location loss: 0.5 * ||weight * (a - b)|| ^ 2

Used in: LocalizationLoss

message WeightedSigmoidClassificationLoss

losses.proto:111

Classification loss using a sigmoid function over class predictions.

Used in: ClassificationLoss

message WeightedSmoothL1LocalizationLoss

losses.proto:86

SmoothL1 (Huber) location loss. The smooth L1_loss is defined elementwise as .5 x^2 if |x| <= delta and delta * (|x|-0.5*delta) otherwise, where x is the difference between predictions and target.

Used in: LocalizationLoss

message WeightedSoftmaxClassificationAgainstLogitsLoss

losses.proto:140

Classification loss using a softmax function over class predictions and a softmax function over the groundtruth labels (assumed to be logits).

Used in: ClassificationLoss

message WeightedSoftmaxClassificationLoss

losses.proto:129

Classification loss using a softmax function over class predictions.

Used in: ClassificationLoss