package tensorflow

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

service EventListener

debug_service.proto:85

EventListener: Receives Event protos, e.g., from debugged TensorFlow runtime(s).

service ProfileAnalysis

profiler_analysis.proto:64

////////////////////////////////////////////////////////////////////////////// ProfileAnalysis service provide entry point for profiling TPU and for serving profiled data to Tensorboard through GRPC //////////////////////////////////////////////////////////////////////////////

service ProfilerService

profiler_service.proto:11

The ProfilerService service retrieves performance information about the programs running on connected devices over a period of time.

service VerbsService

verbs_service.proto:65

message AllocationDescription

allocation_description.proto:10

Used in: NodeExecStats, TensorDescription

message AllocationRecord

step_stats.proto:13

An allocation/de-allocation operation performed by the allocator.

Used in: AllocatorMemoryUsed, tfprof.ExecProfile

message AllocatorMemoryUsed

step_stats.proto:20

Used in: NodeExecStats

message ApiDef

api_def.proto:30

Used to specify and override the default API & behavior in the generated code for client languages, from what you would get from the OpDef alone. There will be a set of ApiDefs that are common to all client languages, and another set per client language. The per-client-language ApiDefs will inherit values from the common ApiDefs which it can either replace or modify. We separate the API definition from the OpDef so we can evolve the API while remaining backwards compatible when interpretting old graphs. Overrides go in an "api_def.pbtxt" file with a text-format ApiDefs message. WARNING: Be *very* careful changing the API for any existing op -- you can change the semantics of existing code. These changes may need to wait until a major release of TensorFlow to avoid breaking our compatibility promises.

Used in: ApiDefs

message ApiDef.Arg

api_def.proto:79

Used in: ApiDef

message ApiDef.Attr

api_def.proto:102

Description of the graph-construction-time configuration of this Op. That is to say, this describes the attr fields that will be specified in the NodeDef.

Used in: ApiDef

message ApiDef.Endpoint

api_def.proto:61

If you specify any endpoint, this will replace all of the inherited endpoints. The first endpoint should be the "canonical" endpoint, and should not be deprecated (unless all endpoints are deprecated).

Used in: ApiDef

enum ApiDef.Visibility

api_def.proto:42

Used in: ApiDef

message ApiDefs

api_def.proto:134

message AssetFileDef

meta_graph.proto:331

An asset file def for a single file or a set of sharded files with the same name.

Used in: MetaGraphDef

message AttrValue

attr_value.proto:16

Protocol buffer representing the value for an attr used to configure an Op. Comment indicates the corresponding attr type. Only the field matching the attr type may be filled.

Used in: ApiDef.Attr, FunctionDef, FunctionDef.ArgAttrs, KernelDef.AttrConstraint, NameAttrList, NodeDef, OpDef.AttrDef, OpInfo, RewriterConfig.CustomGraphOptimizer, eager.Operation, tfprof.ProfileNode

message AttrValue.ListValue

attr_value.proto:18

LINT.IfChange

Used in: AttrValue

message AutoParallelOptions

rewriter_config.proto:15

Used in: RewriterConfig

message AutotuneResult

autotuning.proto:24

Used in: AutotuningLog

message AutotuneResult.ConvKey

autotuning.proto:49

Used in: AutotuneResult, FailureResult

enum AutotuneResult.FailureKind

autotuning.proto:25

Used in: FailureResult

message AutotuneResult.FailureResult

autotuning.proto:31

Used in: AutotuneResult

message AutotuneResult.GemmKey

autotuning.proto:54

Used in: AutotuneResult, FailureResult

message AutotuningLog

autotuning.proto:71

message AvailableDeviceInfo

test_log.proto:130

Matches DeviceAttributes

Used in: MachineConfiguration

message BenchmarkEntries

test_log.proto:67

Used in: TestResults

message BenchmarkEntry

test_log.proto:42

Each unit test or benchmark in a test or benchmark run provides some set of information. Here we provide some reasonable keys one would expect to see, with optional key/value pairs for things we haven't considered. This BenchmarkEntry should be emitted by each unit test or benchmark reporter.

Used in: BenchmarkEntries

message BigQueryTablePartition

bigquery_table_partition.proto:6

This proto specifies a table partition in BigQuery.

message BuildConfiguration

test_log.proto:71

Used in: TestResults

message BundleEntryProto

tensor_bundle.proto:43

Describes the metadata related to a checkpointed tensor.

message BundleHeaderProto

tensor_bundle.proto:23

Special header that is associated with a bundle. TODO(zongheng,zhifengc): maybe in the future, we can add information about which binary produced this checkpoint, timestamp, etc. Sometime, these can be valuable debugging information. And if needed, these can be used as defensive information ensuring reader (binary version) of the checkpoint and the writer (binary version) must match within certain range, etc.

enum BundleHeaderProto.Endianness

tensor_bundle.proto:32

An enum indicating the endianness of the platform that produced this bundle. A bundle can only be read by a platform with matching endianness. Defaults to LITTLE, as most modern platforms are little-endian. Affects the binary tensor data bytes only, not the metadata in protobufs.

Used in: BundleHeaderProto

message BytesList

feature.proto:65

Containers to hold repeated fundamental values.

Used in: Feature

message CPUInfo

test_log.proto:90

Used in: MachineConfiguration

enum CallTraceback.CallType

debug_service.proto:54

Used in: CallTraceback

message CallableOptions

config.proto:656

Defines a subgraph in another `GraphDef` as a set of feed points and nodes to be fetched or executed. Compare with the arguments to `Session::Run()`.

Used in: MakeCallableRequest

message Channel

verbs_service.proto:29

Used in: GetRemoteAddressRequest, GetRemoteAddressResponse

message CheckpointState

checkpoint_state.proto:7

Protocol buffer representing the checkpoint state.

message CleanupAllRequest

worker.proto:180

Used as request type in: grpc.WorkerService.CleanupAll

message CleanupAllResponse

worker.proto:191

Used as response type in: grpc.WorkerService.CleanupAll

(message has no fields)

message CleanupGraphRequest

worker.proto:305

Used as request type in: grpc.WorkerService.CleanupGraph

message CleanupGraphResponse

worker.proto:309

Used as response type in: grpc.WorkerService.CleanupGraph

(message has no fields)

message CloseSessionRequest

master.proto:213

Used as request type in: grpc.MasterService.CloseSession

Used as field type in: ReplayOp

message CloseSessionResponse

master.proto:219

Used as response type in: grpc.MasterService.CloseSession

Used as field type in: ReplayOp

(message has no fields)

message ClusterDef

cluster.proto:80

Defines a TensorFlow cluster as a set of jobs.

Used in: ConfigProto, ServerDef

message CollectionDef

meta_graph.proto:156

CollectionDef should cover most collections. To add a user-defined collection, do one of the following: 1. For simple data types, such as string, int, float: tf.add_to_collection("your_collection_name", your_simple_value) strings will be stored as bytes_list. 2. For Protobuf types, there are three ways to add them: 1) tf.add_to_collection("your_collection_name", your_proto.SerializeToString()) collection_def { key: "user_defined_bytes_collection" value { bytes_list { value: "queue_name: \"test_queue\"\n" } } } or 2) tf.add_to_collection("your_collection_name", str(your_proto)) collection_def { key: "user_defined_string_collection" value { bytes_list { value: "\n\ntest_queue" } } } or 3) any_buf = any_pb2.Any() tf.add_to_collection("your_collection_name", any_buf.Pack(your_proto)) collection_def { key: "user_defined_any_collection" value { any_list { value { type_url: "type.googleapis.com/tensorflow.QueueRunnerDef" value: "\n\ntest_queue" } } } } 3. For Python objects, implement to_proto() and from_proto(), and register them in the following manner: ops.register_proto_function("your_collection_name", proto_type, to_proto=YourPythonObject.to_proto, from_proto=YourPythonObject.from_proto) These functions will be invoked to serialize and de-serialize the collection. For example, ops.register_proto_function(ops.GraphKeys.GLOBAL_VARIABLES, proto_type=variable_pb2.VariableDef, to_proto=Variable.to_proto, from_proto=Variable.from_proto)

Used in: MetaGraphDef

message CollectionDef.AnyList

meta_graph.proto:199

AnyList is used for collecting Any protos.

Used in: CollectionDef

message CollectionDef.BytesList

meta_graph.proto:184

BytesList is used for collecting strings and serialized protobufs. For example: collection_def { key: "trainable_variables" value { bytes_list { value: "\n\017conv1/weights:0\022\024conv1/weights/Assign \032\024conv1/weights/read:0" value: "\n\016conv1/biases:0\022\023conv1/biases/Assign\032 \023conv1/biases/read:0" } } }

Used in: CollectionDef

message CollectionDef.FloatList

meta_graph.proto:194

FloatList is used for collecting float values.

Used in: CollectionDef

message CollectionDef.Int64List

meta_graph.proto:189

Int64List is used for collecting int, int64 and long values.

Used in: CollectionDef

message CollectionDef.NodeList

meta_graph.proto:167

NodeList is used for collecting nodes in graph. For example collection_def { key: "summaries" value { node_list { value: "input_producer/ScalarSummary:0" value: "shuffle_batch/ScalarSummary:0" value: "ImageSummary:0" } }

Used in: CollectionDef

message CommitId

test_log.proto:77

Used in: TestResults

message CompleteGroupRequest

worker.proto:528

Supplies one or more device names as members of the group identified by group_key. Service will respond when all group_size devices become known. All devices in group must have same type.

Used as request type in: grpc.WorkerService.CompleteGroup

message CompleteGroupResponse

worker.proto:537

Gives the complete membership of the group identified by group_key.

Used as response type in: grpc.WorkerService.CompleteGroup

message CompleteInstanceRequest

worker.proto:551

Supplies data about one collective op belonging to the instance identified by instance_key. Service will respond when all group_size ops have become known. Most of the data being sent is for correctness checking, to ensure that all ops in the instance share common attributes.

Used as request type in: grpc.WorkerService.CompleteInstance

message CompleteInstanceResponse

worker.proto:567

Confirms that every op in the instance has consistently declared itself. Also gives the source_rank in case of broadcast.

Used as response type in: grpc.WorkerService.CompleteInstance

message ComputeCapability

autotuning.proto:19

Used in: AutotuningLog, xla.gpu.AlgorithmBlacklistEntry

message CondContextDef

control_flow.proto:31

Protocol buffer representing a CondContext object.

Used in: ControlFlowContextDef

message ConfigProto

config.proto:360

Session configuration parameters. The system picks appropriate values for fields that are not set.

Used in: CreateSessionRequest, ServerDef

message ConfigProto.Experimental

config.proto:462

Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.

Used in: ConfigProto

message ControlFlowContextDef

control_flow.proto:23

Container for any kind of control flow context. Any other control flow contexts that are added below should also be added here.

Used in: CondContextDef, WhileContextDef

message ConvolutionProto

conv_autotuning.proto:11

A convolution. Currently it's only used for logging. In the future, we may want to use it in the API as well.

message CostGraphDef

cost_graph.proto:12

Used in: RunGraphResponse, RunMetadata

message CostGraphDef.Node

cost_graph.proto:13

Used in: CostGraphDef

message CostGraphDef.Node.InputInfo

cost_graph.proto:27

Inputs of this node. They must be executed before this node can be executed. An input is a particular output of another node, specified by the node id and the output index.

Used in: Node

message CostGraphDef.Node.OutputInfo

cost_graph.proto:34

Outputs of this node.

Used in: Node

message CppShapeInferenceInputsNeeded

cpp_shape_inference.proto:27

message CppShapeInferenceResult

cpp_shape_inference.proto:9

message CppShapeInferenceResult.HandleData

cpp_shape_inference.proto:14

Used in: CppShapeInferenceResult

message CppShapeInferenceResult.HandleShapeAndType

cpp_shape_inference.proto:10

Used in: HandleData

message CreateSessionRequest

master.proto:39

Used as request type in: grpc.MasterService.CreateSession

Used as field type in: ReplayOp

message CreateSessionResponse

master.proto:50

Used as response type in: grpc.MasterService.CreateSession

Used as field type in: ReplayOp

message CreateWorkerSessionRequest

worker.proto:60

Used as request type in: grpc.WorkerService.CreateWorkerSession

message CreateWorkerSessionResponse

worker.proto:75

Used as response type in: grpc.WorkerService.CreateWorkerSession

(message has no fields)

message CriticalSectionDef

critical_section.proto:11

Protocol buffer representing a CriticalSection.

message CriticalSectionExecutionDef

critical_section.proto:17

Protocol buffer representing a CriticalSection execution.

message CudnnVersion

autotuning.proto:13

Used in: AutotuningLog, xla.gpu.AlgorithmBlacklistEntry

enum DataType

types.proto:12

(== suppress_warning documentation-presence ==) LINT.IfChange

Used in: AttrValue, AttrValue.ListValue, BundleEntryProto, CompleteInstanceRequest, CostGraphDef.Node.OutputInfo, CppShapeInferenceResult.HandleShapeAndType, FixedLenFeatureProto, GraphTransferConstNodeInfo, GraphTransferGraphInputNodeInfo, GraphTransferGraphOutputNodeInfo, OpDef.ArgDef, OpInfo.TensorProperties, RemoteFusedGraphExecuteInfo.TensorShapeTypeProto, ResourceHandleProto.DtypeAndShape, SavedSliceMeta, SavedVariable, StructuredValue, TensorDescription, TensorInfo, TensorProto, TensorSpecProto, VarLenFeatureProto, contrib.mpi_collectives.MPIRequest, contrib.proto.FieldSpec, eager.RemoteTensorHandle, tf2xla.Feed, tf2xla.Fetch, tf2xla.TensorMetadata, tf2xla.Variable, tfprof.TFProfTensorProto

message DebugOptions

debug.proto:57

Options for initializing DebuggerState in TensorFlow Debugger (tfdbg).

Used in: RegisterGraphRequest, RunOptions

message DebugTensorWatch

debug.proto:11

Option for watching a node in TensorFlow Debugger (tfdbg).

Used in: DebugOptions

message DebuggedSourceFile

debug.proto:73

Used in: DebuggedSourceFiles

message DeleteWorkerSessionRequest

worker.proto:85

Used as request type in: grpc.WorkerService.DeleteWorkerSession

message DeleteWorkerSessionResponse

worker.proto:90

Used as response type in: grpc.WorkerService.DeleteWorkerSession

(message has no fields)

message DeregisterGraphRequest

worker.proto:157

Used as request type in: grpc.WorkerService.DeregisterGraph

message DeregisterGraphResponse

worker.proto:170

TODO(mrry): Optionally add summary stats for the graph.

Used as response type in: grpc.WorkerService.DeregisterGraph

(message has no fields)

message DeviceAttributes

device_attributes.proto:32

Used in: CreateWorkerSessionRequest, GetStatusResponse, ListDevicesResponse, eager.CreateContextRequest, eager.CreateContextResponse

message DeviceLocality

device_attributes.proto:20

Used in: DeviceAttributes, RecvBufRequest, RecvTensorRequest

message DeviceProperties

device_properties.proto:23

Used in: NamedDevice, OpInfo

message DeviceStepStats

step_stats.proto:77

Used in: StepStats

message DictValue

struct.proto:88

Represents a Python dict keyed by `str`. The comment on Unicode from Value.string_value applies analogously.

Used in: StructuredValue

message EmbeddingInfo

projector_config.proto:26

Used in: ProjectorConfig

message EntryValue

test_log.proto:14

Used in: BenchmarkEntry

message ErrorStatusProto

verbs_service.proto:53

message Event

event.proto:14

Protocol buffer representing an event that happened during the execution of a Brain model.

Used as request type in: EventListener.SendEvents

Used as field type in: WorkerHeartbeatResponse

message EventReply

debug_service.proto:28

Reply message from EventListener to the client, i.e., to the source of the Event protocol buffers, e.g., debug ops inserted by a debugged runtime to a TensorFlow graph being executed.

Used as response type in: EventListener.SendEvents, EventListener.SendSourceFiles, EventListener.SendTracebacks

message EventReply.DebugOpStateChange

debug_service.proto:29

Used in: EventReply

enum EventReply.DebugOpStateChange.State

debug_service.proto:30

Used in: DebugOpStateChange

message Example

example.proto:88

message ExampleParserConfiguration

example_parser_configuration.proto:37

message ExampleWithExtras

example_proto_fast_parsing_test.proto:11

This message is parallel to Example, but with additional fields to test unknown fields handling in example_proto_fast_parsing_test.cc.

message ExecutorOpts

worker.proto:206

Options specific to the execution of a single step.

Used in: RunGraphRequest

message ExtendSessionRequest

master.proto:80

Used as request type in: grpc.MasterService.ExtendSession

Used as field type in: ReplayOp

message ExtendSessionResponse

master.proto:96

TODO(mrry): Return something about the operation?

Used as response type in: grpc.MasterService.ExtendSession

Used as field type in: ReplayOp

message Feature

feature.proto:76

Containers for non-sequential data.

Used in: FeatureList, Features

message FeatureConfiguration

example_parser_configuration.proto:30

Used in: ExampleParserConfiguration

message FeatureList

feature.proto:98

Containers for sequential data. A FeatureList contains lists of Features. These may hold zero or more Feature values. FeatureLists are organized into categories by name. The FeatureLists message contains the mapping from name to FeatureList.

Used in: FeatureLists

message FeatureLists

feature.proto:102

Used in: SequenceExample

message Features

feature.proto:85

Used in: Example, ExampleWithExtras, SequenceExample

message FixedLenFeatureProto

example_parser_configuration.proto:23

Used in: FeatureConfiguration

message FloatList

feature.proto:68

Used in: Feature

message FunctionDef

function.proto:25

A function can be instantiated when the runtime can bind every attr with a value. When a GraphDef has a call to a function, it must have binding for every attr defined in the signature. TODO(zhifengc): * device spec, etc.

Used in: FunctionDefLibrary, eager.RegisterFunctionRequest

message FunctionDef.ArgAttrs

function.proto:35

Attributes for function arguments. These attributes are the same set of valid attributes as to _Arg nodes.

Used in: FunctionDef

message FunctionDefLibrary

function.proto:14

A library is a set of named functions.

Used in: GraphDef

message FunctionSpec

saved_object_graph.proto:145

Represents `FunctionSpec` used in `Function`. This represents a function that has been wrapped as a TensorFlow `Function`.

Used in: SavedFunction

message GPUInfo

test_log.proto:115

message GPUOptions

config.proto:18

Used in: ConfigProto

message GPUOptions.Experimental

config.proto:100

Used in: GPUOptions

message GPUOptions.Experimental.VirtualDevices

config.proto:103

Configuration for breaking down a visible GPU into multiple "virtual" devices.

Used in: Experimental

message GetStatusRequest

worker.proto:46

Used as request type in: grpc.WorkerService.GetStatus

(message has no fields)

message GetStatusResponse

worker.proto:48

Used as response type in: grpc.WorkerService.GetStatus

message GetStepSequenceRequest

worker.proto:576

Request for next agreed-upon step_id for the specified graph_keys. This is used to enable multiple graphs containing nodes from a common collective instance to coordinate using the same step_ids.

Used as request type in: grpc.WorkerService.GetStepSequence

message GetStepSequenceResponse

worker.proto:586

Next valid step_ids for one or more graph_keys.

Used as response type in: grpc.WorkerService.GetStepSequence

message GradientDef

function.proto:110

GradientDef defines the gradient function of a function defined in a function library. A gradient function g (specified by gradient_func) for a function f (specified by function_name) must follow the following: The function 'f' must be a numerical function which takes N inputs and produces M outputs. Its gradient function 'g', which is a function taking N + M inputs and produces N outputs. I.e. if we have (y1, y2, ..., y_M) = f(x1, x2, ..., x_N), then, g is (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N, dL/dy1, dL/dy2, ..., dL/dy_M), where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the loss function). dL/dx_i is the partial derivative of L with respect to x_i.

Used in: FunctionDefLibrary

message GraphDebugInfo

graph_debug_info.proto:9

message GraphDebugInfo.FileLineCol

graph_debug_info.proto:11

This represents a file/line location in the source code.

Used in: StackTrace

message GraphDebugInfo.StackTrace

graph_debug_info.proto:30

This represents a stack trace which is a ordered list of `FileLineCol`.

Used in: GraphDebugInfo

message GraphDef

graph.proto:14

Represents the graph of operations

Used in: CreateSessionRequest, ExtendSessionRequest, MetaGraphDef, ProfileResponse, RegisterGraphRequest, RemoteFusedGraphExecuteInfo, RunGraphResponse, RunMetadata, RunMetadata.FunctionGraphs, TensorTracerReport

message GraphOptions

config.proto:244

Used in: ConfigProto, RegisterGraphRequest

message GraphTransferConstNodeInfo

graph_transfer_info.proto:24

Used in: GraphTransferInfo

message GraphTransferGraphInputNodeInfo

graph_transfer_info.proto:39

Used in: GraphTransferInfo

message GraphTransferGraphOutputNodeInfo

graph_transfer_info.proto:45

Used in: GraphTransferInfo

message GraphTransferInfo

graph_transfer_info.proto:54

Protocol buffer representing a handle to a tensorflow resource. Handles are not valid across executions, but can be serialized back and forth from within a single run.

enum GraphTransferInfo.Destination

graph_transfer_info.proto:55

Used in: GraphTransferInfo

message GraphTransferNodeInfo

graph_transfer_info.proto:15

Used in: GraphTransferInfo

message GraphTransferNodeInput

graph_transfer_info.proto:11

Used in: GraphTransferNodeInputInfo

message GraphTransferNodeInputInfo

graph_transfer_info.proto:31

Used in: GraphTransferInfo

message GraphTransferNodeOutputInfo

graph_transfer_info.proto:35

Used in: GraphTransferInfo

message HParamDef

hparam.proto:26

Protocol buffer holding hyper parameters. Examples of hyper parameters: learning_rate = 0.1, num_hidden_units = 100, activations = ['relu', 'tanh']

message HParamDef.BoolList

hparam.proto:36

Used in: HParamType

message HParamDef.BytesList

hparam.proto:27

Used in: HParamType

message HParamDef.FloatList

hparam.proto:30

Used in: HParamType

message HParamDef.HParamType

hparam.proto:39

Used in: HParamDef

message HParamDef.Int64List

hparam.proto:33

Used in: HParamType

message HistogramProto

summary.proto:20

Serialization format for histogram module in core/lib/histogram/histogram.h

Used in: Summary.Value

message Int64List

feature.proto:71

Used in: Feature

device_attributes.proto:10

Used in: LocalLinks

message JobDef

cluster.proto:67

Defines a single job in a TensorFlow cluster.

Used in: ClusterDef

message KernelDef

kernel_def.proto:11

Used in: KernelList

message KernelDef.AttrConstraint

kernel_def.proto:18

Used in: KernelDef

message KernelList

kernel_def.proto:44

A collection of KernelDefs

message LabeledStepStats

worker.proto:410

Used in: LoggingResponse

message ListDevicesRequest

master.proto:262

Used as request type in: grpc.MasterService.ListDevices

Used as field type in: ReplayOp

message ListDevicesResponse

master.proto:274

Used as response type in: grpc.MasterService.ListDevices

Used as field type in: NewReplaySession, ReplayOp

message ListValue

struct.proto:77

Represents a Python list.

Used in: StructuredValue

device_attributes.proto:16

Used in: DeviceLocality

message LogMessage

event.proto:44

Protocol buffer used for logging messages to the events file.

Used in: Event

enum LogMessage.Level

event.proto:45

Used in: LogMessage

message LogNormalDistribution

op_performance_data.proto:64

Used in: OpPerformance

message LoggingRequest

worker.proto:394

Out-of-band request to begin or end logging, or to retrieve logs for particular steps.

Used as request type in: grpc.WorkerService.Logging

message LoggingResponse

worker.proto:415

Used as response type in: grpc.WorkerService.Logging

message MPIRecvTensorResponse

mpi_msg.proto:10

message MachineConfiguration

test_log.proto:137

Used in: TestResults

message MakeCallableRequest

master.proto:285

Used as request type in: grpc.MasterService.MakeCallable

Used as field type in: ReplayOp

message MakeCallableResponse

master.proto:299

Used as response type in: grpc.MasterService.MakeCallable

Used as field type in: ReplayOp

message MarkRecvFinishedRequest

worker.proto:377

Message for managing the response cache maintained on the sender side. Currently only used by the gRPC worker service.

message MarkRecvFinishedResponse

worker.proto:381

(message has no fields)

message MemmappedFileSystemDirectory

memmapped_file_system.proto:29

A directory of regions in a memmapped file.

message MemmappedFileSystemDirectoryElement

memmapped_file_system.proto:22

A message that describes one region of memmapped file.

Used in: MemmappedFileSystemDirectory

message MemoryInfo

test_log.proto:110

Used in: MachineConfiguration

message MemoryLogRawAllocation

log_memory.proto:55

message MemoryLogRawDeallocation

log_memory.proto:76

message MemoryLogStep

log_memory.proto:11

message MemoryLogTensorAllocation

log_memory.proto:19

message MemoryLogTensorDeallocation

log_memory.proto:31

message MemoryLogTensorOutput

log_memory.proto:40

message MemoryRegion

verbs_service.proto:37

Used in: GetRemoteAddressRequest, GetRemoteAddressResponse

message MemoryStats

step_stats.proto:42

For memory tracking.

Used in: NodeExecStats

message MetaGraphDef

meta_graph.proto:33

NOTE: This protocol buffer is evolving, and will go through revisions in the coming months. Protocol buffer containing the following which are necessary to restart training, run inference. It can be used to serialize/de-serialize memory objects necessary for running computation in a graph when crossing the process boundary. It can be used for long term storage of graphs, cross-language execution of graphs, etc. MetaInfoDef GraphDef SaverDef CollectionDef TensorInfo SignatureDef

Used in: SavedModel

message MetaGraphDef.MetaInfoDef

meta_graph.proto:36

Meta information regarding the graph to be exported. To be used by users of this protocol buffer to encode information regarding their meta graph.

Used in: MetaGraphDef

message MetricEntry

test_log.proto:21

Used in: BenchmarkEntry

message NameAttrList

attr_value.proto:59

A list of attr names and their values. The whole list is attached with a string name. E.g., MatMul[T=float].

Used in: AttrValue, AttrValue.ListValue

message NamedDevice

device_properties.proto:54

message NamedTensorProto

named_tensor.proto:12

A pair of tensor name and tensor values.

Used in: RunGraphRequest, RunGraphResponse, RunStepRequest, RunStepResponse

message NamedTupleValue

struct.proto:99

Represents Python's namedtuple.

Used in: StructuredValue

message NewReplaySession

replay_log.proto:11

Records the creation of a new replay session. We record the device listing here to capture the state of the cluster.

Used in: ReplayOp

message NodeDef

node_def.proto:11

Used in: FunctionDef, GraphDef

message NodeDef.ExperimentalDebugInfo

node_def.proto:64

Used in: NodeDef

message NodeExecStats

step_stats.proto:53

Time/size stats recorded for a single execution of a graph node.

Used in: DeviceStepStats

message NodeOutput

step_stats.proto:36

Output sizes recorded for a single execution of a graph node.

Used in: NodeExecStats

message NoneValue

struct.proto:74

Represents None.

Used in: StructuredValue

(message has no fields)

message NormalDistribution

op_performance_data.proto:59

Used in: OpPerformance

message OpDef

op_def.proto:15

Defines an operation. A NodeDef in a GraphDef specifies an Op by using the "op" field which should match the name of a OpDef. LINT.IfChange

Used in: FunctionDef, OpList

message OpDef.ArgDef

op_def.proto:21

For describing inputs and outputs.

Used in: OpDef

message OpDef.AttrDef

op_def.proto:64

Description of the graph-construction-time configuration of this Op. That is to say, this describes the attr fields that will be specified in the NodeDef.

Used in: OpDef

message OpDeprecation

op_def.proto:159

Information about version-dependent deprecation of an op

Used in: OpDef

message OpInfo

op_performance_data.proto:34

Description of an operation as well as the parameters expected to impact its performance.

Used in: OpPerformance

message OpInfo.TensorProperties

op_performance_data.proto:42

Input data types, shapes and values if known.

Used in: OpInfo

message OpList

op_def.proto:168

A collection of OpDefs

Used in: MetaGraphDef.MetaInfoDef

message OpPerformance

op_performance_data.proto:70

Performance data for tensorflow operations

Used in: OpPerformanceList

message OpPerformance.OpMemory

op_performance_data.proto:106

Memory usage data for a tensorflow operation.

Used in: OpPerformance

message OpPerformanceList

op_performance_data.proto:121

A collection of OpPerformance data points.

message OptimizerOptions

config.proto:197

Options passed to the graph optimizer

Used in: GraphOptions

enum OptimizerOptions.GlobalJitLevel

config.proto:231

Control the use of the compiler/jit. Experimental.

Used in: OptimizerOptions, XlaAutoClusteringActivity

enum OptimizerOptions.Level

config.proto:215

Optimization level

Used in: OptimizerOptions

message PairValue

struct.proto:93

Represents a (key, value) pair.

Used in: NamedTupleValue

message PartialRunSetupRequest

master.proto:176

Used as request type in: grpc.MasterService.PartialRunSetup

Used as field type in: ReplayOp

message PartialRunSetupResponse

master.proto:200

Used as response type in: grpc.MasterService.PartialRunSetup

Used as field type in: ReplayOp

message PlatformInfo

test_log.proto:121

Used in: MachineConfiguration

message ProfileOptions

profiler_service.proto:18

Used in: ProfileRequest

message ProfileRequest

profiler_service.proto:37

Used as request type in: ProfilerService.Profile

Used as field type in: NewProfileSessionRequest

message ProfileSessionInfo

profiler_analysis.proto:25

Used in: EnumProfileSessionsAndToolsResponse

message ProfileToolData

profiler_service.proto:72

Used in: ProfileResponse

message ProjectorConfig

projector_config.proto:39

message QueueRunnerDef

queue_runner.proto:12

Protocol buffer representing a QueueRunner.

message RPCOptions

config.proto:316

Used in: ConfigProto

message ReaderBaseState

reader_base.proto:12

For serializing and restoring the state of ReaderBase, see reader_base.h for details.

message RecvBufRequest

worker.proto:463

Use of the fields below may vary by implementation. For example the buf_ptr and num_bytes may be set only for local operations and not sent on the wire, or only sent on the wire in one direction.

Used as request type in: grpc.WorkerService.RecvBuf

message RecvBufRespExtra

transport_options.proto:6

Extra data needed on a non-RDMA RecvBufResponse.

message RecvBufResponse

worker.proto:502

Use of the fields below may vary by implementation. Comments give intended use.

Used as response type in: grpc.WorkerService.RecvBuf

message RecvTensorRequest

worker.proto:317

Used as request type in: grpc.WorkerService.RecvTensor

message RecvTensorResponse

worker.proto:355

Used as response type in: grpc.WorkerService.RecvTensor

Used as field type in: MPIRecvTensorResponse

message RegisterGraphRequest

worker.proto:106

Used as request type in: grpc.WorkerService.RegisterGraph

message RegisterGraphResponse

worker.proto:137

Used as response type in: grpc.WorkerService.RegisterGraph

message ReleaseCallableRequest

master.proto:343

Used as request type in: grpc.MasterService.ReleaseCallable

Used as field type in: ReplayOp

message ReleaseCallableResponse

master.proto:353

Used as response type in: grpc.MasterService.ReleaseCallable

Used as field type in: ReplayOp

(message has no fields)

message RemoteFusedGraphExecuteInfo

remote_fused_graph_execute_info.proto:16

Protocol buffer representing a handle to a tensorflow resource. Handles are not valid across executions, but can be serialized back and forth from within a single run.

message RemoteFusedGraphExecuteInfo.TensorShapeTypeProto

remote_fused_graph_execute_info.proto:18

Used in: RemoteFusedGraphExecuteInfo

message RemoteMemoryRegion

gdr.proto:6

message ReplayOp

replay_log.proto:16

message ResetRequest

master.proto:235

Reset() allows misbehaving or slow sessions to be aborted and closed, and causes their resources eventually to be released. Reset() does not wait for the computations in old sessions to cease; it merely starts the process of tearing them down. However, if a new session is started after a Reset(), the new session is isolated from changes that old sessions (started prior to the Reset()) may continue to make to resources, provided all those resources are in containers listed in "containers". Old sessions may continue to have side-effects on resources not in containers listed in "containers", and thus may affect future sessions' results in ways that are hard to predict. Thus, if well-defined behavior is desired, is it recommended that all containers be listed in "containers". Similarly, if a device_filter is specified, results may be hard to predict.

Used as request type in: grpc.MasterService.Reset

Used as field type in: ReplayOp

message ResetResponse

master.proto:251

Used as response type in: grpc.MasterService.Reset

Used as field type in: ReplayOp

(message has no fields)

message ResourceHandleProto

resource_handle.proto:16

Protocol buffer representing a handle to a tensorflow resource. Handles are not valid across executions, but can be serialized back and forth from within a single run.

Used in: TensorProto

message ResourceHandleProto.DtypeAndShape

resource_handle.proto:35

Protocol buffer representing a pair of (data type, tensor shape).

Used in: ResourceHandleProto

message RewriterConfig

rewriter_config.proto:25

Graph rewriting is experimental and subject to change, not covered by any API stability guarantees.

Used in: GraphOptions

message RewriterConfig.CustomGraphOptimizer

rewriter_config.proto:173

Message to describe custom graph optimizer and its parameters

Used in: RewriterConfig

enum RewriterConfig.MemOptType

rewriter_config.proto:104

Used in: RewriterConfig

enum RewriterConfig.NumIterationsType

rewriter_config.proto:45

Enum controlling the number of times to run optimizers. The default is to run them twice.

Used in: RewriterConfig

enum RewriterConfig.Toggle

rewriter_config.proto:33

Used in: RewriterConfig

message RunCallableRequest

master.proto:310

Used as request type in: grpc.MasterService.RunCallable

Used as field type in: ReplayOp

message RunCallableResponse

master.proto:328

Used as response type in: grpc.MasterService.RunCallable

Used as field type in: ReplayOp

message RunConfiguration

test_log.proto:160

Run-specific items such as arguments to the test / benchmark.

Used in: TestResults

message RunGraphRequest

worker.proto:213

Used as request type in: grpc.WorkerService.RunGraph

message RunGraphResponse

worker.proto:270

Used as response type in: grpc.WorkerService.RunGraph

message RunMetadata

config.proto:609

Metadata output (i.e., non-Tensor) for a single Run() call.

Used in: ProfileResponse, RunCallableResponse, RunStepResponse

message RunMetadata.FunctionGraphs

config.proto:621

Used in: RunMetadata

message RunOptions

config.proto:551

Options for a single Run() call.

Used in: CallableOptions, RunStepRequest

message RunOptions.Experimental

config.proto:590

Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.

Used in: RunOptions

enum RunOptions.TraceLevel

config.proto:554

TODO(pbar) Turn this into a TraceOptions proto which allows tracing to be controlled in a more orthogonal manner?

Used in: RunOptions

message RunStepRequest

master.proto:113

Used as request type in: grpc.MasterService.RunStep

Used as field type in: ReplayOp

message RunStepResponse

master.proto:150

Used as response type in: grpc.MasterService.RunStep

Used as field type in: ReplayOp

message SaveSliceInfoDef

variable.proto:76

Used in: VariableDef

message SavedAsset

saved_object_graph.proto:86

A SavedAsset points to an asset in the MetaGraph. When bound to a function this object evaluates to a tensor with the absolute filename. Users should not depend on a particular part of the filename to remain stable (e.g. basename could be changed).

Used in: SavedObject

message SavedBareConcreteFunction

saved_object_graph.proto:117

Used in: SavedObject

message SavedConcreteFunction

saved_object_graph.proto:102

Stores low-level information about a concrete function. Referenced in either a SavedFunction or a SavedBareConcreteFunction.

Used in: SavedObjectGraph

message SavedConstant

saved_object_graph.proto:127

Used in: SavedObject

message SavedFunction

saved_object_graph.proto:95

A function with multiple signatures, possibly with non-Tensor arguments.

Used in: SavedObject

message SavedModel

saved_model.proto:13

SavedModel is the high level serialization format for TensorFlow Models. See [todo: doc links, similar to session_bundle] for more information.

message SavedObject

saved_object_graph.proto:35

Used in: SavedObjectGraph

message SavedObjectGraph

saved_object_graph.proto:23

Used in: MetaGraphDef

message SavedResource

saved_object_graph.proto:159

A SavedResource represents a TF object that holds state during its lifetime. An object of this type can have a reference to a: create_resource() and an initialize() function.

Used in: SavedObject

message SavedSlice

saved_tensor_slice.proto:61

Saved tensor slice: it stores the name of the tensors, the slice, and the raw data.

Used in: SavedTensorSlices

message SavedSliceMeta

saved_tensor_slice.proto:34

Metadata describing the set of slices of the same tensor saved in a checkpoint file.

Used in: SavedTensorSliceMeta

message SavedTensorSliceMeta

saved_tensor_slice.proto:50

Metadata describing the set of tensor slices saved in a checkpoint file. It is always stored at the beginning of each checkpoint file.

Used in: SavedTensorSlices

message SavedTensorSlices

saved_tensor_slice.proto:77

Each record in a v3 checkpoint file is a serialized SavedTensorSlices message.

message SavedUserObject

saved_object_graph.proto:72

A SavedUserObject is an object (in the object-oriented language of the TensorFlow program) of some user- or framework-defined class other than those handled specifically by the other kinds of SavedObjects. This object cannot be evaluated as a tensor, and therefore cannot be bound to an input of a function.

Used in: SavedObject

message SavedVariable

saved_object_graph.proto:134

Represents a Variable that is initialized by loading the contents from the checkpoint.

Used in: SavedObject

message SaverDef

saver.proto:11

Protocol buffer representing the configuration of a Saver.

Used in: MetaGraphDef

enum SaverDef.CheckpointFormatVersion

saver.proto:38

A version number that identifies a different on-disk checkpoint format. Usually, each subclass of BaseSaverBuilder works with a particular version/format. However, it is possible that the same builder may be upgraded to support a newer checkpoint format in the future.

Used in: SaverDef

message ScopedAllocatorOptions

rewriter_config.proto:20

Used in: RewriterConfig

message SequenceExample

example.proto:298

message ServerDef

tensorflow_server.proto:28

Defines the configuration of a single TensorFlow server.

Used in: CreateWorkerSessionRequest, eager.CreateContextRequest

message SessionInfo

op_performance_data.proto:28

Description of the session when an op is run.

Used in: OpInfo, OpPerformance

message SessionLog

event.proto:62

Protocol buffer used for logging session state.

Used in: Event

enum SessionLog.SessionStatus

event.proto:63

Used in: SessionLog

message SessionMetadata

config.proto:351

Metadata about the session. This can be used by the runtime and the Ops for debugging, monitoring, etc. The (name, version) tuple is expected to be a unique identifier for sessions within the same process. NOTE: This is currently used and propagated only by the direct session.

Used in: ConfigProto.Experimental

message SignatureDef

meta_graph.proto:313

SignatureDef defines the signature of a computation supported by a TensorFlow graph. For example, a model with two loss computations, sharing a single input, might have the following signature_def map. Note that across the two SignatureDefs "loss_A" and "loss_B", the input key, output key, and method_name are identical, and will be used by system(s) that implement or rely upon this particular loss method. The output tensor names differ, demonstrating how different outputs can exist for the same method. signature_def { key: "loss_A" value { inputs { key: "input" value { name: "input:0" dtype: DT_STRING tensor_shape: ... } } outputs { key: "loss_output" value { name: "loss_output_A:0" dtype: DT_FLOAT tensor_shape: ... } } } ... method_name: "some/package/compute_loss" } signature_def { key: "loss_B" value { inputs { key: "input" value { name: "input:0" dtype: DT_STRING tensor_shape: ... } } outputs { key: "loss_output" value { name: "loss_output_B:0" dtype: DT_FLOAT tensor_shape: ... } } } ... method_name: "some/package/compute_loss" }

Used in: MetaGraphDef

message SpriteMetadata

projector_config.proto:20

Used in: EmbeddingInfo

message StepSequence

worker.proto:580

Used in: GetStepSequenceResponse

message StepStats

step_stats.proto:84

Used in: LabeledStepStats, RunGraphResponse, RunMetadata

message StructuredValue

struct.proto:32

`StructuredValue` represents a dynamically typed value representing various data structures that are inspired by Python data structures typically used in TensorFlow functions as inputs and outputs. For example when saving a Layer there may be a `training` argument. If the user passes a boolean True/False, that switches between two concrete TensorFlow functions. In order to switch between them in the same way after loading the SavedModel, we need to represent "True" and "False". A more advanced example might be a function which takes a list of dictionaries mapping from strings to Tensors. In order to map from user-specified arguments `[{"a": tf.constant(1.)}, {"q": tf.constant(3.)}]` after load to the right saved TensorFlow function, we need to represent the nested structure and the strings, recording that we have a trace for anything matching `[{"a": tf.TensorSpec(None, tf.float32)}, {"q": tf.TensorSpec([], tf.float64)}]` as an example. Likewise functions may return nested structures of Tensors, for example returning a dictionary mapping from strings to Tensors. In order for the loaded function to return the same structure we need to serialize it. This is an ergonomic aid for working with loaded SavedModels, not a promise to serialize all possible function signatures. For example we do not expect to pickle generic Python objects, and ideally we'd stay language-agnostic.

Used in: DictValue, FunctionSpec, ListValue, PairValue, SavedConcreteFunction, TupleValue, TypeSpecProto

message Summary

summary.proto:64

A Summary is a set of named values to be displayed by the visualizer. Summaries are produced regularly during training, as controlled by the "summary_interval_secs" attribute of the training operation. Summaries are also produced at the end of an evaluation.

Used in: Event

message Summary.Audio

summary.proto:82

Used in: Value

message Summary.Image

summary.proto:65

Used in: Value

message Summary.Value

summary.proto:95

Used in: Summary

message SummaryDescription

summary.proto:12

Metadata associated with a series of Summary data

message SummaryMetadata

summary.proto:38

A SummaryMetadata encapsulates information on which plugins are able to make use of a certain summary value.

Used in: Summary.Value

message SummaryMetadata.PluginData

summary.proto:39

Used in: SummaryMetadata

message TaggedRunMetadata

event.proto:77

For logging the metadata output for a single session.run() call.

Used in: Event

message TensorConnection

config.proto:642

Defines a connection between two tensors in a `GraphDef`.

Used in: CallableOptions

message TensorDescription

tensor_description.proto:13

Used in: MemoryLogTensorAllocation, MemoryLogTensorOutput, NodeOutput

message TensorInfo

meta_graph.proto:213

Information about a Tensor necessary for feeding or retrieval.

Used in: AssetFileDef, SignatureDef, TensorInfo.CompositeTensor

message TensorInfo.CompositeTensor

meta_graph.proto:230

Generic encoding for composite tensors.

Used in: TensorInfo

message TensorInfo.CooSparse

meta_graph.proto:216

For sparse tensors, The COO encoding stores a triple of values, indices, and shape.

Used in: TensorInfo

message TensorProto

tensor.proto:14

Protocol buffer representing a tensor.

Used in: AttrValue, AttrValue.ListValue, EventReply, FixedLenFeatureProto, NamedTensorProto, OpInfo.TensorProperties, RecvTensorResponse, RunCallableRequest, RunCallableResponse, SavedSlice, Summary.Value, VariantTensorDataProto, data.experimental.SnapshotRecord, eager.SendTensorOp, eager.SendTensorRequest

message TensorShapeProto

tensor_shape.proto:13

Dimensions of a tensor.

Used in: AttrValue, AttrValue.ListValue, BundleEntryProto, CompleteInstanceRequest, CostGraphDef.Node.OutputInfo, CppShapeInferenceResult, CppShapeInferenceResult.HandleShapeAndType, FixedLenFeatureProto, OpInfo.TensorProperties, RemoteFusedGraphExecuteInfo.TensorShapeTypeProto, ResourceHandleProto.DtypeAndShape, SavedSliceMeta, SavedVariable, StructuredValue, TensorDescription, TensorInfo, TensorProto, TensorSpecProto, contrib.mpi_collectives.MPIRequest, eager.QueueResponse, tensorrt.TRTEngineInstance, tf2xla.Feed, tf2xla.Fetch, tf2xla.TensorMetadata, tf2xla.Variable, tfprof.GraphNodeProto

message TensorShapeProto.Dim

tensor_shape.proto:15

One dimension of the tensor.

Used in: TensorShapeProto

message TensorSliceProto

tensor_slice.proto:13

Can only be interpreted if you know the corresponding TensorShape.

Used in: BundleEntryProto, SavedSlice, SavedSliceMeta

message TensorSliceProto.Extent

tensor_slice.proto:15

Extent of the slice in one dimension.

Either both or no attributes must be set. When no attribute is set means: All data in that dimension.

Used in: TensorSliceProto

message TensorSpecProto

struct.proto:105

A protobuf to tf.TensorSpec.

Used in: StructuredValue

message TensorTracerReport

tensor_tracer.proto:15

Tensor Tracer Report proto gives information about the trace including: - TensorTracerConfig: version, device, num replicas, trace mode. - Graphdef, e.g., list of operations, tensors - TracedTensorDef: * Name of the tensor * Tracepoint name if provided. * Index of the tensor in the compact cache if traced. * Explanation for why the tensor is traced or not.

message TensorTracerReport.TensorTracerConfig

tensor_tracer.proto:24

Used in: TensorTracerReport

message TensorTracerReport.TracedTensorDef

tensor_tracer.proto:52

Used in: TensorTracerReport

message TestResults

test_log.proto:171

The output of one benchmark / test run. Each run contains a list of tests or benchmarks, stored as BenchmarkEntry messages. This message should be emitted by the reporter (which runs the test / BM in a subprocess and then reads the emitted BenchmarkEntry messages; usually from a serialized json file, finally collecting them along with additional information about the test run.

enum TestResults.BenchmarkType

test_log.proto:201

The type of benchmark.

Used in: TestResults

message ThreadPoolOptionProto

config.proto:291

Used in: ConfigProto

message ToolRequestOptions

profiler_service.proto:26

Used in: ProfileRequest

message TraceOpts

worker.proto:428

Used in: TracingRequest

message TracingRequest

worker.proto:446

Out-of-band request to configure distributed tracing.

Used as request type in: grpc.WorkerService.Tracing

message TracingResponse

worker.proto:450

Used as response type in: grpc.WorkerService.Tracing

(message has no fields)

message TrackableObjectGraph

trackable_object_graph.proto:11

message TrackableObjectGraph.TrackableObject

trackable_object_graph.proto:12

Used in: TrackableObjectGraph

message TrackableObjectGraph.TrackableObject.ObjectReference

trackable_object_graph.proto:13

Used in: SavedObject, TrackableObject

message TrackableObjectGraph.TrackableObject.SerializedTensor

trackable_object_graph.proto:21

Used in: TrackableObject

message TrackableObjectGraph.TrackableObject.SlotVariableReference

trackable_object_graph.proto:39

Used in: SavedObject, TrackableObject

message TupleValue

struct.proto:82

Represents a Python tuple.

Used in: StructuredValue

message TypeSpecProto

struct.proto:112

Represents a tf.TypeSpec

Used in: StructuredValue, TensorInfo.CompositeTensor

enum TypeSpecProto.TypeSpecClass

struct.proto:113

Used in: TypeSpecProto

message ValuesDef

control_flow.proto:13

Protocol buffer representing the values in ControlFlowContext.

Used in: CondContextDef, WhileContextDef

message VarLenFeatureProto

example_parser_configuration.proto:16

Used in: FeatureConfiguration

enum VariableAggregation

variable.proto:31

Indicates how a distributed variable will be aggregated.

Used in: SavedVariable, VariableDef

message VariableDef

variable.proto:47

Protocol buffer representing a Variable.

enum VariableSynchronization

variable.proto:13

Indicates when a distributed variable will be synced.

Used in: SavedVariable, VariableDef

message VariantTensorDataProto

tensor.proto:87

Protocol buffer representing the serialization format of DT_VARIANT tensors.

Used in: TensorProto

message VerifierConfig

verifier_config.proto:11

The config for graph verifiers.

Used in: RewriterConfig

enum VerifierConfig.Toggle

verifier_config.proto:12

Used in: VerifierConfig

message VersionDef

versions.proto:23

Version information for a piece of serialized data There are different types of versions for each type of data (GraphDef, etc.), but they all have the same common shape described here. Each consumer has "consumer" and "min_producer" versions (specified elsewhere). A consumer is allowed to consume this data if producer >= min_producer consumer >= min_consumer consumer not in bad_consumers

Used in: BundleHeaderProto, GraphDef, SavedTensorSliceMeta, SavedUserObject, eager.CreateContextRequest

message WatchdogConfig

event.proto:105

Used in: WorkerHeartbeatRequest

message WhileContextDef

control_flow.proto:52

Protocol buffer representing a WhileContext object.

Used in: ControlFlowContextDef

enum WorkerHealth

event.proto:89

Current health status of a worker.

Used in: WorkerHeartbeatResponse

message WorkerHeartbeatRequest

event.proto:109

message WorkerHeartbeatResponse

event.proto:114

enum WorkerShutdownMode

event.proto:98

Indicates the behavior of the worker when an internal error or shutdown signal is received.

Used in: WorkerHeartbeatRequest

message XlaAutoClusteringActivity

xla_activity.proto:67

Listeners listening for auto clustering events get messages of this type. Next ID: 4

message XlaAutoClusteringSummary

xla_activity.proto:25

Summarizes the results of auto-clustering a TensorFlow graph. Next ID: 5

Used in: XlaAutoClusteringActivity

message XlaAutoClusteringSummary.Cluster

xla_activity.proto:41

Describes a single XLA cluster. Next ID: 4

Used in: XlaAutoClusteringSummary

message XlaAutoClusteringSummary.OpAndCount

xla_activity.proto:30

Represents a single element in a histogram of ops ("op" as in "TensorFlow operation"). Next ID: 3

Used in: XlaAutoClusteringSummary, Cluster

message XlaJitCompilationActivity

xla_activity.proto:85

Listeners listening for JIT compilation events get messages of this type. Each instance of XlaJitCompilationActivity corresponds to a single compilation of a single XLA cluster. E.g. if a graph has two clusters, A and B, and A is compiled 5 times and B is compiled 2 times then we will generate 7 instances of XlaJitCompilationActivity. Next ID: 5

message XlaOptimizationRemark

xla_activity.proto:104

LINT.IfChange Used for logging situations seen in Tensorflow models being optimized that are known to not perform well with XLA. Next ID: 3

enum XlaOptimizationRemark.Warning

xla_activity.proto:106

Next ID: 6

Used in: XlaOptimizationRemark