Get desktop application:
View/edit binary Protocol Buffers messages
a gRPC BentoServer.
Call handles methodcaller of given API entrypoint.
Request message for incoming Call.
api_name defines the API entrypoint to call. api_name is the name of the function defined in bentoml.Service. Example: @svc.api(input=NumpyNdarray(), output=File()) def predict(input: NDArray[float]) -> bytes: ... api_name is "predict" in this case.
NDArray represents a n-dimensional array of arbitrary type.
DataFrame represents any tabular data type. We are using DataFrame as a trivial representation for tabular type.
Series portrays a series of values. This can be used for representing Series types in tabular data.
File represents for any arbitrary file type. This can be plaintext, image, video, audio, etc.
Text represents a string inputs.
JSON is represented by using google.protobuf.Value. see https://github.com/protocolbuffers/protobuf/blob/main/src/google/protobuf/struct.proto
Multipart represents a multipart message. It comprises of a mapping from given type name to a subset of aforementioned types.
serialized_bytes is for data serialized in BentoML's internal serialization format.
Request message for incoming Call.
NDArray represents a n-dimensional array of arbitrary type.
DataFrame represents any tabular data type. We are using DataFrame as a trivial representation for tabular type.
Series portrays a series of values. This can be used for representing Series types in tabular data.
File represents for any arbitrary file type. This can be plaintext, image, video, audio, etc.
Text represents a string inputs.
JSON is represented by using google.protobuf.Value. see https://github.com/protocolbuffers/protobuf/blob/main/src/google/protobuf/struct.proto
Multipart represents a multipart message. It comprises of a mapping from given type name to a subset of aforementioned types.
serialized_bytes is for data serialized in BentoML's internal serialization format.
DataFrame represents any tabular data type. We are using DataFrame as a trivial representation for tabular type. This message carries given implementation of tabular data based on given orientation. TODO: support index, records, etc.
Used in:
, ,columns name
columns orient. { column ↠ { index ↠ value } }
File represents for any arbitrary file type. This can be plaintext, image, video, audio, etc.
Used in:
, ,optional type of file, let it be csv, text, parquet, etc.
contents of file as bytes.
FileType represents possible file type to be handled by BentoML. Currently, we only support plaintext (Text()), image (Image()), and file (File()). TODO: support audio and video streaming file types.
Used in:
file types
image types
Multipart represents a multipart message. It comprises of a mapping from given type name to a subset of aforementioned types.
Used in:
,NDArray represents a n-dimensional array of arbitrary type.
Used in:
, ,DTYPE is the data type of given array
shape is the shape of given array.
represents a string parameter value.
represents a float parameter value.
represents a double parameter value.
represents a bool parameter value.
represents a int32 parameter value.
represents a int64 parameter value.
represents a uint32 parameter value.
represents a uint64 parameter value.
Represents data type of a given array.
Used in:
Represents a None type.
Represents an float type.
Represents an double type.
Represents a bool type.
Represents an int32 type.
Represents an int64 type.
Represents a uint32 type.
Represents a uint64 type.
Represents a string type.
Part represents possible value types for multipart message. These are the same as the types in Request message.
Used in:
NDArray represents a n-dimensional array of arbitrary type.
DataFrame represents any tabular data type. We are using DataFrame as a trivial representation for tabular type.
Series portrays a series of values. This can be used for representing Series types in tabular data.
File represents for any arbitrary file type. This can be plaintext, image, video, audio, etc.
Text represents a string inputs.
JSON is represented by using google.protobuf.Value. see https://github.com/protocolbuffers/protobuf/blob/main/src/google/protobuf/struct.proto
serialized_bytes is for data serialized in BentoML's internal serialization format.
Series portrays a series of values. This can be used for representing Series types in tabular data.
Used in:
, , ,A bool parameter value
A float parameter value
A int32 parameter value
A int64 parameter value
A string parameter value
represents a double parameter value.