package org.platanios.tensorflow.proto

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

service EagerService

eager_service.proto:258

////////////////////////////////////////////////////////////////////////////// Eager Service defines a TensorFlow service that executes operations eagerly on a set of local devices, on behalf of a remote Eager executor. The service impl will keep track of the various clients and devices it has access to and allows the client to enqueue ops on any devices that it is able to access and schedule data transfers from/to any of the peers. A client can generate multiple contexts to be able to independently execute operations, but cannot share data between the two contexts. NOTE: Even though contexts generated by clients should be independent, the lower level tensorflow execution engine is not, so they might share some data (e.g. a Device's ResourceMgr). //////////////////////////////////////////////////////////////////////////////

service MasterService

master_service.proto:89

service WorkerService

worker_service.proto:40

message AllocationDescription

allocation_description.proto:11

Used in: NodeExecStats, TensorDescription

message AllocationRecord

step_stats.proto:15

An allocation/de-allocation operation performed by the allocator.

Used in: AllocatorMemoryUsed

message AllocatorMemoryUsed

step_stats.proto:22

Used in: NodeExecStats

message ApiDef

api_def.proto:31

Used to specify and override the default API & behavior in the generated code for client languages, from what you would get from the OpDef alone. There will be a set of ApiDefs that are common to all client languages, and another set per client language. The per-client-language ApiDefs will inherit values from the common ApiDefs which it can either replace or modify. We separate the API definition from the OpDef so we can evolve the API while remaining backwards compatible when interpretting old graphs. Overrides go in an "api_def.pbtxt" file with a text-format ApiDefs message. WARNING: Be *very* careful changing the API for any existing op -- you can change the semantics of existing code. These changes may need to wait until a major release of TensorFlow to avoid breaking our compatibility promises.

Used in: ApiDefs

message ApiDef.Arg

api_def.proto:80

Used in: ApiDef

message ApiDef.Attr

api_def.proto:103

Description of the graph-construction-time configuration of this Op. That is to say, this describes the attr fields that will be specified in the NodeDef.

Used in: ApiDef

message ApiDef.Endpoint

api_def.proto:62

If you specify any endpoint, this will replace all of the inherited endpoints. The first endpoint should be the "canonical" endpoint, and should not be deprecated (unless all endpoints are deprecated).

Used in: ApiDef

enum ApiDef.Visibility

api_def.proto:43

Used in: ApiDef

message ApiDefs

api_def.proto:135

message AssetFileDef

meta_graph.proto:335

An asset file def for a single file or a set of sharded files with the same name.

Used in: MetaGraphDef

message AttrValue

attr_value.proto:18

Protocol buffer representing the value for an attr used to configure an Op. Comment indicates the corresponding attr type. Only the field matching the attr type may be filled.

Used in: ApiDef.Attr, FunctionDef, FunctionDef.ArgAttrs, KernelDef.AttrConstraint, NameAttrList, NodeDef, OpDef.AttrDef, Operation, RewriterConfig.CustomGraphOptimizer

message AttrValue.ListValue

attr_value.proto:20

LINT.IfChange

Used in: AttrValue

message AutoParallelOptions

rewriter_config.proto:14

Used in: RewriterConfig

message AutotuneResult

autotuning.proto:26

Used in: AutotuningLog

message AutotuneResult.ConvKey

autotuning.proto:51

Used in: AutotuneResult, FailureResult

enum AutotuneResult.FailureKind

autotuning.proto:27

Used in: FailureResult

message AutotuneResult.FailureResult

autotuning.proto:33

Used in: AutotuneResult

message AutotuneResult.GemmKey

autotuning.proto:56

Used in: AutotuneResult, FailureResult

message AutotuningLog

autotuning.proto:73

message BinSummary

bfc_memory_map.proto:28

Used in: MemoryDump

message BoundedTensorSpecProto

struct.proto:117

A protobuf to represent tf.BoundedTensorSpec.

Used in: StructuredValue

message BundleEntryProto

tensor_bundle.proto:45

Describes the metadata related to a checkpointed tensor.

message BundleHeaderProto

tensor_bundle.proto:25

Special header that is associated with a bundle. TODO(zongheng,zhifengc): maybe in the future, we can add information about which binary produced this checkpoint, timestamp, etc. Sometime, these can be valuable debugging information. And if needed, these can be used as defensive information ensuring reader (binary version) of the checkpoint and the writer (binary version) must match within certain range, etc.

enum BundleHeaderProto.Endianness

tensor_bundle.proto:34

An enum indicating the endianness of the platform that produced this bundle. A bundle can only be read by a platform with matching endianness. Defaults to LITTLE, as most modern platforms are little-endian. Affects the binary tensor data bytes only, not the metadata in protobufs.

Used in: BundleHeaderProto

message BytesList

feature.proto:67

Containers to hold repeated fundamental values.

Used in: Feature

message CallableOptions

config.proto:724

Defines a subgraph in another `GraphDef` as a set of feed points and nodes to be fetched or executed. Compare with the arguments to `Session::Run()`.

Used in: MakeCallableRequest

message CheckpointState

checkpoint_state.proto:10

Protocol buffer representing the checkpoint state.

message CleanupFunctionOp

eager_service.proto:222

Cleanup the step state of a multi-device function (e.g. tensors buffered by a `Send` op but not picked up by its corresponding `Recv` op).

Used in: QueueItem

message CloseSessionRequest

master.proto:213

Used as request type in: MasterService.CloseSession

Used as field type in: ReplayOp

message CloseSessionResponse

master.proto:219

Used as response type in: MasterService.CloseSession

Used as field type in: ReplayOp

(message has no fields)

message ClusterDef

cluster.proto:81

Defines a TensorFlow cluster as a set of jobs.

Used in: ConfigProto, ServerDef

message ClusterDeviceFilters

device_filters.proto:71

Defines the device filters for jobs in a cluster.

Used in: ServerDef

message CodeLocation

debug_event.proto:147

Code location information: A stack trace with host-name information. Instead of encoding the detailed stack trace, this proto refers to IDs of stack frames stored as `StackFrameWithId` protos.

Used in: Execution, GraphOpCreation

message CollectionDef

meta_graph.proto:160

CollectionDef should cover most collections. To add a user-defined collection, do one of the following: 1. For simple data types, such as string, int, float: tf.add_to_collection("your_collection_name", your_simple_value) strings will be stored as bytes_list. 2. For Protobuf types, there are three ways to add them: 1) tf.add_to_collection("your_collection_name", your_proto.SerializeToString()) collection_def { key: "user_defined_bytes_collection" value { bytes_list { value: "queue_name: \"test_queue\"\n" } } } or 2) tf.add_to_collection("your_collection_name", str(your_proto)) collection_def { key: "user_defined_string_collection" value { bytes_list { value: "\n\ntest_queue" } } } or 3) any_buf = any_pb2.Any() tf.add_to_collection("your_collection_name", any_buf.Pack(your_proto)) collection_def { key: "user_defined_any_collection" value { any_list { value { type_url: "type.googleapis.com/tensorflow.QueueRunnerDef" value: "\n\ntest_queue" } } } } 3. For Python objects, implement to_proto() and from_proto(), and register them in the following manner: ops.register_proto_function("your_collection_name", proto_type, to_proto=YourPythonObject.to_proto, from_proto=YourPythonObject.from_proto) These functions will be invoked to serialize and de-serialize the collection. For example, ops.register_proto_function(ops.GraphKeys.GLOBAL_VARIABLES, proto_type=variable_pb2.VariableDef, to_proto=Variable.to_proto, from_proto=Variable.from_proto)

Used in: MetaGraphDef

message CollectionDef.AnyList

meta_graph.proto:203

AnyList is used for collecting Any protos.

Used in: CollectionDef

message CollectionDef.BytesList

meta_graph.proto:188

BytesList is used for collecting strings and serialized protobufs. For example: collection_def { key: "trainable_variables" value { bytes_list { value: "\n\017conv1/weights:0\022\024conv1/weights/Assign \032\024conv1/weights/read:0" value: "\n\016conv1/biases:0\022\023conv1/biases/Assign\032 \023conv1/biases/read:0" } } }

Used in: CollectionDef

message CollectionDef.FloatList

meta_graph.proto:198

FloatList is used for collecting float values.

Used in: CollectionDef

message CollectionDef.Int64List

meta_graph.proto:193

Int64List is used for collecting int, int64 and long values.

Used in: CollectionDef

message CollectionDef.NodeList

meta_graph.proto:171

NodeList is used for collecting nodes in graph. For example collection_def { key: "summaries" value { node_list { value: "input_producer/ScalarSummary:0" value: "shuffle_batch/ScalarSummary:0" value: "ImageSummary:0" } }

Used in: CollectionDef

message ComputeCapability

autotuning.proto:21

Used in: AutotuningLog

message CondContextDef

control_flow.proto:32

Protocol buffer representing a CondContext object.

Used in: ControlFlowContextDef

message ConfigProto

config.proto:372

Session configuration parameters. The system picks appropriate values for fields that are not set.

Used in: CreateSessionRequest, RegisterGraphRequest, ServerDef

message ConfigProto.Experimental

config.proto:491

Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.

Used in: ConfigProto

message ControlFlowContextDef

control_flow.proto:24

Container for any kind of control flow context. Any other control flow contexts that are added below should also be added here.

Used in: CondContextDef, WhileContextDef

message CostGraphDef

cost_graph.proto:14

Used in: RunGraphResponse, RunMetadata

message CostGraphDef.AggregatedCost

cost_graph.proto:81

Total cost of this graph, typically used for balancing decisions.

Used in: CostGraphDef

message CostGraphDef.Node

cost_graph.proto:15

Used in: CostGraphDef

message CostGraphDef.Node.InputInfo

cost_graph.proto:29

Inputs of this node. They must be executed before this node can be executed. An input is a particular output of another node, specified by the node id and the output index.

Used in: Node

message CostGraphDef.Node.OutputInfo

cost_graph.proto:36

Outputs of this node.

Used in: Node

message CreateSessionRequest

master.proto:39

Used as request type in: MasterService.CreateSession

Used as field type in: ReplayOp

message CreateSessionResponse

master.proto:50

Used as response type in: MasterService.CreateSession

Used as field type in: ReplayOp

message CriticalSectionDef

critical_section.proto:12

Protocol buffer representing a CriticalSection.

message CriticalSectionExecutionDef

critical_section.proto:18

Protocol buffer representing a CriticalSection execution.

message CudnnVersion

autotuning.proto:15

Used in: AutotuningLog

enum DataClass

summary.proto:66

Used in: SummaryMetadata

enum DataType

types.proto:12

(== suppress_warning documentation-presence ==) LINT.IfChange

Used in: AttrValue, AttrValue.ListValue, BoundedTensorSpecProto, BundleEntryProto, CompleteInstanceRequest, CostGraphDef.Node.OutputInfo, GraphTransferConstNodeInfo, GraphTransferGraphInputNodeInfo, GraphTransferGraphOutputNodeInfo, OpDef.ArgDef, RemoteTensorHandle, ResourceDtypeAndShape, ResourceHandleProto.DtypeAndShape, SavedVariable, StructuredValue, TensorDescription, TensorInfo, TensorProto, TensorSpecProto

message DebugEvent

debug_event.proto:69

An Event related to the debugging of a TensorFlow program.

message DebugMetadata

debug_event.proto:111

Metadata about the debugger and the debugged TensorFlow program.

Used in: DebugEvent

message DebugOptions

debug.proto:58

Options for initializing DebuggerState in TensorFlow Debugger (tfdbg).

Used in: RegisterGraphRequest, RunOptions

message DebugTensorWatch

debug.proto:12

Option for watching a node in TensorFlow Debugger (tfdbg).

Used in: DebugOptions

message DebuggedDevice

debug_event.proto:213

A device on which ops and/or tensors are instrumented by the debugger.

Used in: DebugEvent

message DebuggedGraph

debug_event.proto:189

A debugger-instrumented graph.

Used in: DebugEvent

message DebuggedSourceFile

debug.proto:74

Used in: DebuggedSourceFiles

message DebuggedSourceFiles

debug.proto:91

message DeviceAttributes

device_attributes.proto:33

Used in: CreateContextRequest, CreateContextResponse, CreateWorkerSessionRequest, GetStatusResponse, ListDevicesResponse, UpdateContextRequest, UpdateContextResponse

message DeviceLocality

device_attributes.proto:21

Used in: DeviceAttributes, RecvBufRequest, RecvTensorRequest

message DeviceProperties

device_properties.proto:24

Used in: NamedDevice

message DeviceStepStats

step_stats.proto:79

Used in: StepStats

message DictValue

struct.proto:93

Represents a Python dict keyed by `str`. The comment on Unicode from Value.string_value applies analogously.

Used in: StructuredValue

message Duration

duration.proto:103

A Duration represents a signed, fixed-length span of time represented as a count of seconds and fractions of seconds at nanosecond resolution. It is independent of any calendar and concepts like "day" or "month". It is related to Timestamp in that the difference between two Timestamp values is a Duration and it can be added or subtracted from a Timestamp. Range is approximately +-10,000 years. # Examples Example 1: Compute Duration from two Timestamps in pseudo code. Timestamp start = ...; Timestamp end = ...; Duration duration = ...; duration.seconds = end.seconds - start.seconds; duration.nanos = end.nanos - start.nanos; if (duration.seconds < 0 && duration.nanos > 0) { duration.seconds += 1; duration.nanos -= 1000000000; } else if (durations.seconds > 0 && duration.nanos < 0) { duration.seconds -= 1; duration.nanos += 1000000000; } Example 2: Compute Timestamp from Timestamp + Duration in pseudo code. Timestamp start = ...; Duration duration = ...; Timestamp end = ...; end.seconds = start.seconds + duration.seconds; end.nanos = start.nanos + duration.nanos; if (end.nanos < 0) { end.seconds -= 1; end.nanos += 1000000000; } else if (end.nanos >= 1000000000) { end.seconds += 1; end.nanos -= 1000000000; } Example 3: Compute Duration from datetime.timedelta in Python. td = datetime.timedelta(days=3, minutes=10) duration = Duration() duration.FromTimedelta(td) # JSON Mapping In JSON format, the Duration type is encoded as a string rather than an object, where the string ends in the suffix "s" (indicating seconds) and is preceded by the number of seconds, with nanoseconds expressed as fractional seconds. For example, 3 seconds with 0 nanoseconds should be encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should be expressed in JSON format as "3.000000001s", and 3 seconds and 1 microsecond should be expressed in JSON format as "3.000001s".

Used in: AutotuneResult

message EnqueueRequest

eager_service.proto:153

Used as request type in: EagerService.Enqueue, EagerService.StreamingEnqueue

message EnqueueResponse

eager_service.proto:159

Used as response type in: EagerService.Enqueue, EagerService.StreamingEnqueue

message Event

event.proto:14

Protocol buffer representing an event that happened during the execution of a Brain model.

Used in: WorkerHeartbeatResponse

message Example

example.proto:90

message Execution

debug_event.proto:227

Data relating to the eager execution of an op or a Graph. For a op that generates N output tensors (N >= 0), only one Execution proto will be used to describe the execution event.

Used in: DebugEvent

message ExecutorOpts

worker.proto:211

Options specific to the execution of a single step.

Used in: RunGraphRequest

message ExtendSessionRequest

master.proto:80

Used as request type in: MasterService.ExtendSession

Used as field type in: ReplayOp

message ExtendSessionResponse

master.proto:96

TODO(mrry): Return something about the operation?

Used as response type in: MasterService.ExtendSession

Used as field type in: ReplayOp

message Feature

feature.proto:78

Containers for non-sequential data.

Used in: FeatureList, Features

message FeatureList

feature.proto:100

Containers for sequential data. A FeatureList contains lists of Features. These may hold zero or more Feature values. FeatureLists are organized into categories by name. The FeatureLists message contains the mapping from name to FeatureList.

Used in: FeatureLists

message FeatureLists

feature.proto:104

Used in: SequenceExample

message Features

feature.proto:87

Used in: Example, SequenceExample

message FloatList

feature.proto:70

Used in: Feature

message FunctionDef

function.proto:27

A function can be instantiated when the runtime can bind every attr with a value. When a GraphDef has a call to a function, it must have binding for every attr defined in the signature. TODO(zhifengc): * device spec, etc.

Used in: FunctionDefLibrary, RegisterFunctionOp

message FunctionDef.ArgAttrs

function.proto:37

Attributes for function arguments. These attributes are the same set of valid attributes as to _Arg nodes.

Used in: FunctionDef

message FunctionDefLibrary

function.proto:16

A library is a set of named functions.

Used in: GraphDef, RegisterFunctionOp

message FunctionSpec

saved_object_graph.proto:145

Represents `FunctionSpec` used in `Function`. This represents a function that has been wrapped as a TensorFlow `Function`.

Used in: SavedFunction

message GPUOptions

config.proto:18

Used in: ConfigProto

message GPUOptions.Experimental

config.proto:100

Used in: GPUOptions

message GPUOptions.Experimental.VirtualDevices

config.proto:103

Configuration for breaking down a visible GPU into multiple "virtual" devices.

Used in: Experimental

message GradientDef

function.proto:123

GradientDef defines the gradient function of a function defined in a function library. A gradient function g (specified by gradient_func) for a function f (specified by function_name) must follow the following: The function 'f' must be a numerical function which takes N inputs and produces M outputs. Its gradient function 'g', which is a function taking N + M inputs and produces N outputs. I.e. if we have (y1, y2, ..., y_M) = f(x1, x2, ..., x_N), then, g is (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N, dL/dy1, dL/dy2, ..., dL/dy_M), where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the loss function). dL/dx_i is the partial derivative of L with respect to x_i.

Used in: FunctionDefLibrary

message GraphDebugInfo

graph_debug_info.proto:11

message GraphDebugInfo.FileLineCol

graph_debug_info.proto:13

This represents a file/line location in the source code.

Used in: StackTrace, StackFrameWithId

message GraphDebugInfo.StackTrace

graph_debug_info.proto:32

This represents a stack trace which is a ordered list of `FileLineCol`.

Used in: GraphDebugInfo

message GraphDef

graph.proto:16

Represents the graph of operations

Used in: CreateSessionRequest, ExtendSessionRequest, MetaGraphDef, RegisterGraphRequest, RunGraphResponse, RunMetadata, RunMetadata.FunctionGraphs

message GraphExecutionTrace

debug_event.proto:271

Data relating to an execution of a Graph (e.g., an eager execution of a FuncGraph). The values of the intermediate tensors computed in the graph are recorded in this proto. A graph execution may correspond to one or more pieces of `GraphExecutionTrace`, depending on whether the instrumented tensor values are summarized in an aggregated or separate fashion.

Used in: DebugEvent

message GraphOpCreation

debug_event.proto:158

The creation of an op in a TensorFlow Graph (e.g., FuncGraph in TF2).

Used in: DebugEvent

message GraphOptions

config.proto:256

Used in: ConfigProto, RegisterGraphRequest

message GraphTransferConstNodeInfo

graph_transfer_info.proto:26

Used in: GraphTransferInfo

message GraphTransferGraphInputNodeInfo

graph_transfer_info.proto:41

Used in: GraphTransferInfo

message GraphTransferGraphOutputNodeInfo

graph_transfer_info.proto:47

Used in: GraphTransferInfo

message GraphTransferInfo

graph_transfer_info.proto:56

Protocol buffer representing a handle to a tensorflow resource. Handles are not valid across executions, but can be serialized back and forth from within a single run.

enum GraphTransferInfo.Destination

graph_transfer_info.proto:57

Used in: GraphTransferInfo

message GraphTransferNodeInfo

graph_transfer_info.proto:17

Used in: GraphTransferInfo

message GraphTransferNodeInput

graph_transfer_info.proto:13

Used in: GraphTransferNodeInputInfo

message GraphTransferNodeInputInfo

graph_transfer_info.proto:33

Used in: GraphTransferInfo

message GraphTransferNodeOutputInfo

graph_transfer_info.proto:37

Used in: GraphTransferInfo

message HistogramProto

summary.proto:22

Serialization format for histogram module in core/lib/histogram/histogram.h

Used in: Summary.Value

message Int64List

feature.proto:73

Used in: Feature

device_attributes.proto:11

Used in: LocalLinks

message JobDef

cluster.proto:68

Defines a single job in a TensorFlow cluster.

Used in: ClusterDef

message JobDeviceFilters

device_filters.proto:62

Defines the device filters for tasks in a job.

Used in: ClusterDeviceFilters

message KernelDef

kernel_def.proto:13

Used in: KernelList

message KernelDef.AttrConstraint

kernel_def.proto:20

Used in: KernelDef

message KernelList

kernel_def.proto:46

A collection of KernelDefs

message LabeledStepStats

worker.proto:415

Used in: LoggingResponse

message ListDevicesRequest

master.proto:262

Used as request type in: MasterService.ListDevices

Used as field type in: ReplayOp

message ListDevicesResponse

master.proto:274

Used as response type in: MasterService.ListDevices

Used as field type in: NewReplaySession, ReplayOp

message ListValue

struct.proto:82

Represents a Python list.

Used in: StructuredValue

device_attributes.proto:17

Used in: DeviceLocality

message LogMessage

event.proto:44

Protocol buffer used for logging messages to the events file.

Used in: Event

enum LogMessage.Level

event.proto:45

Used in: LogMessage

message MakeCallableRequest

master.proto:285

Used as request type in: MasterService.MakeCallable

Used as field type in: ReplayOp

message MakeCallableResponse

master.proto:299

Used as response type in: MasterService.MakeCallable

Used as field type in: ReplayOp

message MarkRecvFinishedRequest

worker.proto:382

Message for managing the response cache maintained on the sender side. Currently only used by the gRPC worker service.

message MarkRecvFinishedResponse

worker.proto:386

(message has no fields)

message MemAllocatorStats

bfc_memory_map.proto:8

Some of the data from AllocatorStats

Used in: MemoryDump

message MemChunk

bfc_memory_map.proto:16

Used in: MemoryDump

message MemoryDump

bfc_memory_map.proto:41

message MemoryLogRawAllocation

log_memory.proto:57

message MemoryLogRawDeallocation

log_memory.proto:78

message MemoryLogStep

log_memory.proto:13

message MemoryLogTensorAllocation

log_memory.proto:21

message MemoryLogTensorDeallocation

log_memory.proto:33

message MemoryLogTensorOutput

log_memory.proto:42

message MemoryStats

step_stats.proto:44

For memory tracking.

Used in: NodeExecStats

message MetaGraphDef

meta_graph.proto:34

NOTE: This protocol buffer is evolving, and will go through revisions in the coming months. Protocol buffer containing the following which are necessary to restart training, run inference. It can be used to serialize/de-serialize memory objects necessary for running computation in a graph when crossing the process boundary. It can be used for long term storage of graphs, cross-language execution of graphs, etc. MetaInfoDef GraphDef SaverDef CollectionDef TensorInfo SignatureDef

Used in: SavedModel

message MetaGraphDef.MetaInfoDef

meta_graph.proto:37

Meta information regarding the graph to be exported. To be used by users of this protocol buffer to encode information regarding their meta graph.

Used in: MetaGraphDef

message NameAttrList

attr_value.proto:61

A list of attr names and their values. The whole list is attached with a string name. E.g., MatMul[T=float].

Used in: AttrValue, AttrValue.ListValue

message NamedDevice

device_properties.proto:55

message NamedTensorProto

named_tensor.proto:14

A pair of tensor name and tensor values.

Used in: RunGraphRequest, RunGraphResponse, RunStepRequest, RunStepResponse

message NamedTupleValue

struct.proto:104

Represents Python's namedtuple.

Used in: StructuredValue

message NewReplaySession

replay_log.proto:12

Records the creation of a new replay session. We record the device listing here to capture the state of the cluster.

Used in: ReplayOp

message NodeDef

node_def.proto:13

Used in: FunctionDef, GraphDef

message NodeDef.ExperimentalDebugInfo

node_def.proto:66

Used in: NodeDef

message NodeExecStats

step_stats.proto:55

Time/size stats recorded for a single execution of a graph node.

Used in: DeviceStepStats

message NodeOutput

step_stats.proto:38

Output sizes recorded for a single execution of a graph node.

Used in: NodeExecStats

message NoneValue

struct.proto:79

Represents None.

Used in: StructuredValue

(message has no fields)

message OpDef

op_def.proto:17

Defines an operation. A NodeDef in a GraphDef specifies an Op by using the "op" field which should match the name of a OpDef. LINT.IfChange

Used in: FunctionDef, OpList

message OpDef.ArgDef

op_def.proto:23

For describing inputs and outputs.

Used in: OpDef

message OpDef.AttrDef

op_def.proto:66

Description of the graph-construction-time configuration of this Op. That is to say, this describes the attr fields that will be specified in the NodeDef.

Used in: OpDef

message OpDeprecation

op_def.proto:161

Information about version-dependent deprecation of an op

Used in: OpDef

message OpList

op_def.proto:170

A collection of OpDefs

Used in: MetaGraphDef.MetaInfoDef

message Operation

eager_service.proto:17

A proto representation of an eager operation.

Used in: QueueItem, RunComponentFunctionRequest

message Operation.Input

eager_service.proto:27

Used in: Operation

message OptimizerOptions

config.proto:209

Options passed to the graph optimizer

Used in: GraphOptions

enum OptimizerOptions.GlobalJitLevel

config.proto:243

Control the use of the compiler/jit. Experimental.

Used in: OptimizerOptions

enum OptimizerOptions.Level

config.proto:227

Optimization level

Used in: OptimizerOptions

message PairValue

struct.proto:98

Represents a (key, value) pair.

Used in: NamedTupleValue

message PartialRunSetupRequest

master.proto:176

Used as request type in: MasterService.PartialRunSetup

Used as field type in: ReplayOp

message PartialRunSetupResponse

master.proto:200

Used as response type in: MasterService.PartialRunSetup

Used as field type in: ReplayOp

message QueueItem

eager_service.proto:57

Used in: EnqueueRequest

message QueueResponse

eager_service.proto:75

Used in: EnqueueResponse

message QueueRunnerDef

queue_runner.proto:14

Protocol buffer representing a QueueRunner.

message RPCOptions

config.proto:328

Used in: ConfigProto

message ReaderBaseState

reader_base.proto:13

For serializing and restoring the state of ReaderBase, see reader_base.h for details.

message RecvBufRespExtra

transport_options.proto:8

Extra data needed on a non-RDMA RecvBufResponse.

message RegisterFunctionOp

eager_service.proto:204

Used in: QueueItem

message ReleaseCallableRequest

master.proto:343

Used as request type in: MasterService.ReleaseCallable

Used as field type in: ReplayOp

message ReleaseCallableResponse

master.proto:353

Used as response type in: MasterService.ReleaseCallable

Used as field type in: ReplayOp

(message has no fields)

message RemoteTensorHandle

remote_tensor_handle.proto:19

Used in: Operation.Input, QueueItem

message ReplayOp

replay_log.proto:17

message RequestedExitCode

event.proto:109

Used in: WorkerHeartbeatRequest

message ResetRequest

master.proto:235

Reset() allows misbehaving or slow sessions to be aborted and closed, and causes their resources eventually to be released. Reset() does not wait for the computations in old sessions to cease; it merely starts the process of tearing them down. However, if a new session is started after a Reset(), the new session is isolated from changes that old sessions (started prior to the Reset()) may continue to make to resources, provided all those resources are in containers listed in "containers". Old sessions may continue to have side-effects on resources not in containers listed in "containers", and thus may affect future sessions' results in ways that are hard to predict. Thus, if well-defined behavior is desired, is it recommended that all containers be listed in "containers". Similarly, if a device_filter is specified, results may be hard to predict.

Used as request type in: MasterService.Reset

Used as field type in: ReplayOp

message ResetResponse

master.proto:251

Used as response type in: MasterService.Reset

Used as field type in: ReplayOp

(message has no fields)

message ResourceDtypeAndShape

remote_tensor_handle.proto:14

Used in: RemoteTensorHandle

message ResourceHandleProto

resource_handle.proto:17

Protocol buffer representing a handle to a tensorflow resource. Handles are not valid across executions, but can be serialized back and forth from within a single run.

Used in: TensorProto

message ResourceHandleProto.DtypeAndShape

resource_handle.proto:36

Protocol buffer representing a pair of (data type, tensor shape).

Used in: ResourceHandleProto

message RewriterConfig

rewriter_config.proto:24

Graph rewriting is experimental and subject to change, not covered by any API stability guarantees.

Used in: GraphOptions

message RewriterConfig.CustomGraphOptimizer

rewriter_config.proto:175

Message to describe custom graph optimizer and its parameters

Used in: RewriterConfig

enum RewriterConfig.MemOptType

rewriter_config.proto:106

Used in: RewriterConfig

enum RewriterConfig.NumIterationsType

rewriter_config.proto:44

Enum controlling the number of times to run optimizers. The default is to run them twice.

Used in: RewriterConfig

enum RewriterConfig.Toggle

rewriter_config.proto:32

Used in: RewriterConfig

message RunCallableRequest

master.proto:310

Used as request type in: MasterService.RunCallable

Used as field type in: ReplayOp

message RunCallableResponse

master.proto:328

Used as response type in: MasterService.RunCallable

Used as field type in: ReplayOp

message RunMetadata

config.proto:677

Metadata output (i.e., non-Tensor) for a single Run() call.

Used in: RunCallableResponse, RunStepResponse

message RunMetadata.FunctionGraphs

config.proto:689

Used in: RunMetadata

message RunOptions

config.proto:612

Options for a single Run() call.

Used in: CallableOptions, RunStepRequest

message RunOptions.Experimental

config.proto:651

Everything inside Experimental is subject to change and is not subject to API stability guarantees in https://www.tensorflow.org/guide/version_compat.

Used in: RunOptions

message RunOptions.Experimental.RunHandlerPoolOptions

config.proto:663

Options for run handler thread pool.

Used in: Experimental

enum RunOptions.TraceLevel

config.proto:615

TODO(pbar) Turn this into a TraceOptions proto which allows tracing to be controlled in a more orthogonal manner?

Used in: RunOptions

message RunStepRequest

master.proto:113

Used as request type in: MasterService.RunStep

Used as field type in: ReplayOp

message RunStepResponse

master.proto:150

Used as response type in: MasterService.RunStep

Used as field type in: ReplayOp

message SaveSliceInfoDef

variable.proto:75

Used in: VariableDef

message SavedAsset

saved_object_graph.proto:86

A SavedAsset points to an asset in the MetaGraph. When bound to a function this object evaluates to a tensor with the absolute filename. Users should not depend on a particular part of the filename to remain stable (e.g. basename could be changed).

Used in: SavedObject

message SavedBareConcreteFunction

saved_object_graph.proto:117

Used in: SavedObject

message SavedConcreteFunction

saved_object_graph.proto:102

Stores low-level information about a concrete function. Referenced in either a SavedFunction or a SavedBareConcreteFunction.

Used in: SavedObjectGraph

message SavedConstant

saved_object_graph.proto:127

Used in: SavedObject

message SavedFunction

saved_object_graph.proto:95

A function with multiple signatures, possibly with non-Tensor arguments.

Used in: SavedObject

message SavedModel

saved_model.proto:15

SavedModel is the high level serialization format for TensorFlow Models. See [todo: doc links, similar to session_bundle] for more information.

message SavedObject

saved_object_graph.proto:36

Used in: SavedObjectGraph

message SavedObjectGraph

saved_object_graph.proto:24

Used in: MetaGraphDef

message SavedResource

saved_object_graph.proto:159

A SavedResource represents a TF object that holds state during its lifetime. An object of this type can have a reference to a: create_resource() and an initialize() function.

Used in: SavedObject

message SavedUserObject

saved_object_graph.proto:72

A SavedUserObject is an object (in the object-oriented language of the TensorFlow program) of some user- or framework-defined class other than those handled specifically by the other kinds of SavedObjects. This object cannot be evaluated as a tensor, and therefore cannot be bound to an input of a function.

Used in: SavedObject

message SavedVariable

saved_object_graph.proto:134

Represents a Variable that is initialized by loading the contents from the checkpoint.

Used in: SavedObject

message SaverDef

saver.proto:12

Protocol buffer representing the configuration of a Saver.

Used in: MetaGraphDef

enum SaverDef.CheckpointFormatVersion

saver.proto:39

A version number that identifies a different on-disk checkpoint format. Usually, each subclass of BaseSaverBuilder works with a particular version/format. However, it is possible that the same builder may be upgraded to support a newer checkpoint format in the future.

Used in: SaverDef

message ScopedAllocatorOptions

rewriter_config.proto:19

Used in: RewriterConfig

message SendTensorOp

eager_service.proto:228

Used in: QueueItem

message SequenceExample

example.proto:300

message ServerDef

tensorflow_server.proto:31

Defines the configuration of a single TensorFlow server.

Used in: CreateContextRequest, CreateWorkerSessionRequest, UpdateContextRequest

message SessionLog

event.proto:62

Protocol buffer used for logging session state.

Used in: Event

enum SessionLog.SessionStatus

event.proto:63

Used in: SessionLog

message SessionMetadata

config.proto:363

Metadata about the session. This can be used by the runtime and the Ops for debugging, monitoring, etc. The (name, version) tuple is expected to be a unique identifier for sessions within the same process. NOTE: This is currently used and propagated only by the direct session.

Used in: ConfigProto.Experimental

message SignatureDef

meta_graph.proto:317

SignatureDef defines the signature of a computation supported by a TensorFlow graph. For example, a model with two loss computations, sharing a single input, might have the following signature_def map. Note that across the two SignatureDefs "loss_A" and "loss_B", the input key, output key, and method_name are identical, and will be used by system(s) that implement or rely upon this particular loss method. The output tensor names differ, demonstrating how different outputs can exist for the same method. signature_def { key: "loss_A" value { inputs { key: "input" value { name: "input:0" dtype: DT_STRING tensor_shape: ... } } outputs { key: "loss_output" value { name: "loss_output_A:0" dtype: DT_FLOAT tensor_shape: ... } } } ... method_name: "some/package/compute_loss" } signature_def { key: "loss_B" value { inputs { key: "input" value { name: "input:0" dtype: DT_STRING tensor_shape: ... } } outputs { key: "loss_output" value { name: "loss_output_B:0" dtype: DT_FLOAT tensor_shape: ... } } } ... method_name: "some/package/compute_loss" }

Used in: MetaGraphDef

message SnapShot

bfc_memory_map.proto:36

Used in: MemoryDump

message SourceContext

source_context.proto:44

`SourceContext` represents information about the source of a protobuf element, like the file in which it is defined.

Used in: google.Enum, google.Type

message SourceFile

debug_event.proto:122

Content of a source file involved in the execution of the debugged TensorFlow program.

Used in: DebugEvent

message StackFrameWithId

debug_event.proto:134

A stack frame with ID.

Used in: DebugEvent

message StepSequence

worker.proto:585

Used in: GetStepSequenceResponse

message StepStats

step_stats.proto:86

Used in: LabeledStepStats, RunGraphResponse, RunMetadata

message StructuredValue

struct.proto:35

`StructuredValue` represents a dynamically typed value representing various data structures that are inspired by Python data structures typically used in TensorFlow functions as inputs and outputs. For example when saving a Layer there may be a `training` argument. If the user passes a boolean True/False, that switches between two concrete TensorFlow functions. In order to switch between them in the same way after loading the SavedModel, we need to represent "True" and "False". A more advanced example might be a function which takes a list of dictionaries mapping from strings to Tensors. In order to map from user-specified arguments `[{"a": tf.constant(1.)}, {"q": tf.constant(3.)}]` after load to the right saved TensorFlow function, we need to represent the nested structure and the strings, recording that we have a trace for anything matching `[{"a": tf.TensorSpec(None, tf.float32)}, {"q": tf.TensorSpec([], tf.float64)}]` as an example. Likewise functions may return nested structures of Tensors, for example returning a dictionary mapping from strings to Tensors. In order for the loaded function to return the same structure we need to serialize it. This is an ergonomic aid for working with loaded SavedModels, not a promise to serialize all possible function signatures. For example we do not expect to pickle generic Python objects, and ideally we'd stay language-agnostic.

Used in: DictValue, FunctionSpec, ListValue, PairValue, SavedConcreteFunction, TupleValue, TypeSpecProto

message Summary

summary.proto:90

A Summary is a set of named values to be displayed by the visualizer. Summaries are produced regularly during training, as controlled by the "summary_interval_secs" attribute of the training operation. Summaries are also produced at the end of an evaluation.

Used in: Event

message Summary.Audio

summary.proto:108

Used in: Value

message Summary.Image

summary.proto:91

Used in: Value

message Summary.Value

summary.proto:121

Used in: Summary

message SummaryDescription

summary.proto:14

Metadata associated with a series of Summary data

message SummaryMetadata

summary.proto:40

A SummaryMetadata encapsulates information on which plugins are able to make use of a certain summary value.

Used in: Summary.Value

message SummaryMetadata.PluginData

summary.proto:41

Used in: SummaryMetadata

message SyncRemoteExecutorForStream

eager_service.proto:226

Used in: QueueItem

(message has no fields)

message TaggedRunMetadata

event.proto:77

For logging the metadata output for a single session.run() call.

Used in: Event

message TaskDeviceFilters

device_filters.proto:57

Defines the device filters for a remote task.

Used in: JobDeviceFilters

message TensorConnection

config.proto:710

Defines a connection between two tensors in a `GraphDef`.

Used in: CallableOptions

enum TensorDebugMode

debug_event.proto:17

Available modes for extracting debugging information from a Tensor. TODO(cais): Document the detailed column names and semantics in a separate markdown file once the implementation settles.

Used in: Execution, GraphExecutionTrace

message TensorDescription

tensor_description.proto:15

Used in: MemoryLogTensorAllocation, MemoryLogTensorOutput, NodeOutput

message TensorInfo

meta_graph.proto:217

Information about a Tensor necessary for feeding or retrieval.

Used in: AssetFileDef, SignatureDef, TensorInfo.CompositeTensor

message TensorInfo.CompositeTensor

meta_graph.proto:234

Generic encoding for composite tensors.

Used in: TensorInfo

message TensorInfo.CooSparse

meta_graph.proto:220

For sparse tensors, The COO encoding stores a triple of values, indices, and shape.

Used in: TensorInfo

message TensorProto

tensor.proto:16

Protocol buffer representing a tensor.

Used in: AttrValue, AttrValue.ListValue, BoundedTensorSpecProto, Execution, GraphExecutionTrace, NamedTensorProto, Operation.Input, QueueResponse, RecvTensorResponse, RunCallableRequest, RunCallableResponse, RunComponentFunctionResponse, SendTensorOp, Summary.Value, VariantTensorDataProto

message TensorShapeProto

tensor_shape.proto:14

Dimensions of a tensor.

Used in: AttrValue, AttrValue.ListValue, BoundedTensorSpecProto, BundleEntryProto, CompleteInstanceRequest, CostGraphDef.Node.OutputInfo, QueueResponse, ResourceDtypeAndShape, ResourceHandleProto.DtypeAndShape, RunComponentFunctionResponse, SavedVariable, StructuredValue, TensorDescription, TensorInfo, TensorProto, TensorSpecProto

message TensorShapeProto.Dim

tensor_shape.proto:16

One dimension of the tensor.

Used in: TensorShapeProto

message TensorSliceProto

tensor_slice.proto:14

Can only be interpreted if you know the corresponding TensorShape.

Used in: BundleEntryProto

message TensorSliceProto.Extent

tensor_slice.proto:16

Extent of the slice in one dimension.

Either both or no attributes must be set. When no attribute is set means: All data in that dimension.

Used in: TensorSliceProto

message TensorSpecProto

struct.proto:110

A protobuf to represent tf.TensorSpec.

Used in: StructuredValue

message ThreadPoolOptionProto

config.proto:303

Used in: ConfigProto

message TraceOpts

worker.proto:433

Used in: TracingRequest

message TrackableObjectGraph

trackable_object_graph.proto:12

message TrackableObjectGraph.TrackableObject

trackable_object_graph.proto:13

Used in: TrackableObjectGraph

message TrackableObjectGraph.TrackableObject.ObjectReference

trackable_object_graph.proto:14

Used in: SavedObject, TrackableObject

message TrackableObjectGraph.TrackableObject.SerializedTensor

trackable_object_graph.proto:22

Used in: TrackableObject

message TrackableObjectGraph.TrackableObject.SlotVariableReference

trackable_object_graph.proto:40

Used in: SavedObject, TrackableObject

message TupleValue

struct.proto:87

Represents a Python tuple.

Used in: StructuredValue

message TypeSpecProto

struct.proto:126

Represents a tf.TypeSpec

Used in: StructuredValue, TensorInfo.CompositeTensor

enum TypeSpecProto.TypeSpecClass

struct.proto:127

Used in: TypeSpecProto

message ValuesDef

control_flow.proto:14

Protocol buffer representing the values in ControlFlowContext.

Used in: CondContextDef, WhileContextDef

enum VariableAggregation

variable.proto:30

Indicates how a distributed variable will be aggregated.

Used in: SavedVariable, VariableDef

message VariableDef

variable.proto:46

Protocol buffer representing a Variable.

enum VariableSynchronization

variable.proto:12

Indicates when a distributed variable will be synced.

Used in: SavedVariable, VariableDef

message VariantTensorDataProto

tensor.proto:89

Protocol buffer representing the serialization format of DT_VARIANT tensors.

Used in: TensorProto

message VerifierConfig

verifier_config.proto:12

The config for graph verifiers.

Used in: RewriterConfig

enum VerifierConfig.Toggle

verifier_config.proto:13

Used in: VerifierConfig

message VersionDef

versions.proto:24

Version information for a piece of serialized data There are different types of versions for each type of data (GraphDef, etc.), but they all have the same common shape described here. Each consumer has "consumer" and "min_producer" versions (specified elsewhere). A consumer is allowed to consume this data if producer >= min_producer consumer >= min_consumer consumer not in bad_consumers

Used in: BundleHeaderProto, CreateContextRequest, GraphDef, SavedUserObject

message WatchdogConfig

event.proto:105

Used in: WorkerHeartbeatRequest

message WhileContextDef

control_flow.proto:53

Protocol buffer representing a WhileContext object.

Used in: ControlFlowContextDef

enum WorkerHealth

event.proto:89

Current health status of a worker.

Used in: WorkerHeartbeatResponse

message WorkerHeartbeatRequest

event.proto:113

message WorkerHeartbeatResponse

event.proto:119

enum WorkerShutdownMode

event.proto:98

Indicates the behavior of the worker when an internal error or shutdown signal is received.

Used in: WorkerHeartbeatRequest