Objectron Dataset

Objectron is a dataset of short object centric video clips with pose annotations.

WebsiteDataset FormatTutorialsLicense

The Objectron dataset is a collection of short, object-centric video clips, which are accompanied by AR session metadata that includes camera poses, sparse point-clouds and characterization of the planar surfaces in the surrounding environment. In each video, the camera moves around the object, capturing it from different angles. The data also contain manually annotated 3D bounding boxes for each object, which describe the object’s position, orientation, and dimensions. The dataset consists of 15K annotated video clips supplemented with over 4M annotated images in the following categories: bikes, books, bottles, cameras, cereal boxes, chairs, cups, laptops, and shoes. In addition, to ensure geo-diversity, our dataset is collected from 10 countries across five continents. Along with the dataset, we are also sharing a 3D object detection solution for four categories of objects — shoes, chairs, mugs, and cameras. These models are trained using this dataset, and are released in MediaPipe, Google's open source framework for cross-platform customizable ML solutions for live and streaming media.

Key Features

Dataset Format

The data is stored in the objectron bucket on Google Cloud storage. Check out the Download Data notebook for a quick review of how to download/access the dataset. The following assets are available:

Raw dataset size is 1.9TB (including videos and their annotations). Total dataset size is 4.4TB (including videos, records, sequences, etc.). This repository provides the required schemas and tools to parse the dataset.

class bike book bottle camera cereal_box chair cup laptop shoe
#videos 476 2024 1928 815 1609 1943 2204 1473 2116
#frames 150k 576k 476k 233k 396k 488k 546k 485k 557k

Tutorials

License

Objectron is released under Computational Use of Data Agreement 1.0 (C-UDA-1.0). A copy of the license is available in this repository.

BibTeX

If you found this dataset useful, please cite our paper.

@article{objectron2021,
  title={Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild with Pose Annotations},
  author={Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jianing Wei, Matthias Grundmann},
  journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

This is not an officially supported Google product. If you have any question, you can email us at objectron@google.com or join our mailing list at objectron@googlegroups.com