Get desktop application:
View/edit binary Protocol Buffers messages
`Any` contains an arbitrary serialized protocol buffer message along with a URL that describes the type of the serialized message. Protobuf library provides support to pack/unpack Any values in the form of utility functions or additional generated methods of the Any type. Example 1: Pack and unpack a message in C++. Foo foo = ...; Any any; any.PackFrom(foo); ... if (any.UnpackTo(&foo)) { ... } Example 2: Pack and unpack a message in Java. Foo foo = ...; Any any = Any.pack(foo); ... if (any.is(Foo.class)) { foo = any.unpack(Foo.class); } // or ... if (any.isSameTypeAs(Foo.getDefaultInstance())) { foo = any.unpack(Foo.getDefaultInstance()); } Example 3: Pack and unpack a message in Python. foo = Foo(...) any = Any() any.Pack(foo) ... if any.Is(Foo.DESCRIPTOR): any.Unpack(foo) ... Example 4: Pack and unpack a message in Go foo := &pb.Foo{...} any, err := anypb.New(foo) if err != nil { ... } ... foo := &pb.Foo{} if err := any.UnmarshalTo(foo); err != nil { ... } The pack methods provided by protobuf library will by default use 'type.googleapis.com/full.type.name' as the type URL and the unpack methods only use the fully qualified type name after the last '/' in the type URL, for example "foo.bar.com/x/y.z" will yield type name "y.z". JSON ==== The JSON representation of an `Any` value uses the regular representation of the deserialized, embedded message, with an additional field `@type` which contains the type URL. Example: package google.profile; message Person { string first_name = 1; string last_name = 2; } { "@type": "type.googleapis.com/google.profile.Person", "firstName": <string>, "lastName": <string> } If the embedded message type is well-known and has a custom JSON representation, that representation will be embedded adding a field `value` which holds the custom JSON in addition to the `@type` field. Example (for message [google.protobuf.Duration][]): { "@type": "type.googleapis.com/google.protobuf.Duration", "value": "1.212s" }
Used in:
, ,A URL/resource name that uniquely identifies the type of the serialized protocol buffer message. This string must contain at least one "/" character. The last segment of the URL's path must represent the fully qualified name of the type (as in `path/google.protobuf.Duration`). The name should be in a canonical form (e.g., leading "." is not accepted). In practice, teams usually precompile into the binary all types that they expect it to use in the context of Any. However, for URLs which use the scheme `http`, `https`, or no scheme, one can optionally set up a type server that maps type URLs to message definitions as follows: * If no scheme is provided, `https` is assumed. * An HTTP GET on the URL must yield a [google.protobuf.Type][] value in binary format, or produce an error. * Applications are allowed to cache lookup results based on the URL, or have them precompiled into a binary to avoid any lookup. Therefore, binary compatibility needs to be preserved on changes to types. (Use versioned type names to manage breaking changes.) Note: this functionality is not currently available in the official protobuf release, and it is not used for type URLs beginning with type.googleapis.com. As of May 2023, there are no widely used type server implementations and no plans to implement one. Schemes other than `http`, `https` (or the empty scheme) might be used with implementation specific semantics.
Must be a valid serialized protocol buffer of the above specified type.
A Duration represents a signed, fixed-length span of time represented as a count of seconds and fractions of seconds at nanosecond resolution. It is independent of any calendar and concepts like "day" or "month". It is related to Timestamp in that the difference between two Timestamp values is a Duration and it can be added or subtracted from a Timestamp. Range is approximately +-10,000 years. # Examples Example 1: Compute Duration from two Timestamps in pseudo code. Timestamp start = ...; Timestamp end = ...; Duration duration = ...; duration.seconds = end.seconds - start.seconds; duration.nanos = end.nanos - start.nanos; if (duration.seconds < 0 && duration.nanos > 0) { duration.seconds += 1; duration.nanos -= 1000000000; } else if (duration.seconds > 0 && duration.nanos < 0) { duration.seconds -= 1; duration.nanos += 1000000000; } Example 2: Compute Timestamp from Timestamp + Duration in pseudo code. Timestamp start = ...; Duration duration = ...; Timestamp end = ...; end.seconds = start.seconds + duration.seconds; end.nanos = start.nanos + duration.nanos; if (end.nanos < 0) { end.seconds -= 1; end.nanos += 1000000000; } else if (end.nanos >= 1000000000) { end.seconds += 1; end.nanos -= 1000000000; } Example 3: Compute Duration from datetime.timedelta in Python. td = datetime.timedelta(days=3, minutes=10) duration = Duration() duration.FromTimedelta(td) # JSON Mapping In JSON format, the Duration type is encoded as a string rather than an object, where the string ends in the suffix "s" (indicating seconds) and is preceded by the number of seconds, with nanoseconds expressed as fractional seconds. For example, 3 seconds with 0 nanoseconds should be encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should be expressed in JSON format as "3.000000001s", and 3 seconds and 1 microsecond should be expressed in JSON format as "3.000001s".
Used in:
Signed seconds of the span of time. Must be from -315,576,000,000 to +315,576,000,000 inclusive. Note: these bounds are computed from: 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years
Signed fractions of a second at nanosecond resolution of the span of time. Durations less than one second are represented with a 0 `seconds` field and a positive or negative `nanos` field. For durations of one second or more, a non-zero value for the `nanos` field must be of the same sign as the `seconds` field. Must be from -999,999,999 to +999,999,999 inclusive.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one. All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a [24-hour linear smear](https://developers.google.com/time/smear). The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings. # Examples Example 1: Compute Timestamp from POSIX `time()`. Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0); Example 2: Compute Timestamp from POSIX `gettimeofday()`. struct timeval tv; gettimeofday(&tv, NULL); Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000); Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`. FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime; // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100)); Example 4: Compute Timestamp from Java `System.currentTimeMillis()`. long millis = System.currentTimeMillis(); Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build(); Example 5: Compute Timestamp from Java `Instant.now()`. Instant now = Instant.now(); Timestamp timestamp = Timestamp.newBuilder().setSeconds(now.getEpochSecond()) .setNanos(now.getNano()).build(); Example 6: Compute Timestamp from current time in Python. timestamp = Timestamp() timestamp.GetCurrentTime() # JSON Mapping In JSON format, the Timestamp type is encoded as a string in the [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset). For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017. In JavaScript, one can convert a Date object to this format using the standard [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString) method. In Python, a standard `datetime.datetime` object can be converted to this format using [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's [`ISODateTimeFormat.dateTime()`]( http://joda-time.sourceforge.net/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime() ) to obtain a formatter capable of generating timestamps in this format.
Used in:
Represents seconds of UTC time since Unix epoch 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59Z inclusive.
Non-negative fractions of a second at nanosecond resolution. Negative second values with fractions must still have non-negative nanos values that count forward in time. Must be from 0 to 999,999,999 inclusive.