Providing a tool for some fashion neural network frameworks.
The nn_tools is released under the MIT License (refer to the LICENSE file for details).
The new version of pytorch_to_caffe supporting the newest version(from 0.2.0 to 1.0) of pytorch. NOTICE: The transfer output will be somewhat different with the original model, caused by implementation difference.
Supporting layers types: conv2d, transpose_conv2d, linear, max_pool2d, avg_pool2d, dropout, relu, prelu, threshold(only value=0),softmax, batch_norm, instance_norm
Supporting operations: torch.split, torch.cat
Supporting tensor Variable operations: var.view, var.mean, var.sum, var.contiguous, + (add), += (iadd), -(sub), -=(isub) * (mul) *= (imul) / (div)
The not supporting operations will transferred to a Python layer in Caffe. You can implemented it by yourself.
Testify whether your transformed Caffe model is workable. See tmp/testify_pytorch_to_caffe.py
.
The supported above can transfer many kinds of nets. The tested network:
The supported layers concluded the most popular layers and operations. The other layer types will be added soon, you can ask me to add them in issues.
Note: You need net.eval()
before converting the pytorch networks.
Example: please see file example/<alexnet/resnet/inception_v3>_pytorch_to_caffe.py
.
$python3 example/alexnet_pytorch_to_caffe.py
Add blob blob0 : torch.Size([1, 3, 226, 226])
Processing Layer: features.0
Add blob conv_blob1 : torch.Size([1, 64, 55, 55])
Processing Layer: features.1
...
Transform Completed
If you have compiled Pycaffe and set the pycaffe path. You can run testify_pytorch_to_caffe to test whether the output of every Caffe layer is the same as the output in Pytorch.
$python3 example/testify_pytorch_to_caffe_example.py
TEST layer features_0: PASS
TEST layer features_1: PASS
...
TEST output
TEST output: PASS
The analyser can analyse all the model layers' [input_size, output_size, multiplication ops, addition ops, comparation ops, tot ops, weight size and so on] given a input tensor size, which is convenint for model deploy analyse.
Before you analyse your network, Netscope is recommended to visiualize your network.
Command:python caffe_analyser.py [-h] prototxt outdir shape
,
), in caffe image shape should be: batch_size, channel, image_height, image_width.For example python caffe_analyser.py resnet_18_deploy.prototxt analys_result.csv 1,3,224,224
Supporting analyse the inheritors of torch.nn.Moudule class.
Command:pytorch_analyser.py [-h] [--out OUT] [--class_args ARGS] path name shape
,
), in pytorch image shape should be: batch_size, channel, image_height, image_width.For example python pytorch_analyser.py example/resnet_pytorch_analysis_example.py resnet18 1,3,224,224
Supporting analyse the inheritors of mxnet.sym.
Command:mxnet_analyser.py [-h] [--out OUT] [--func_args ARGS] [--func_kwargs FUNC_KWARGS] path name shape
,
), in mxnet image shape should be: batch_size, channel, image_height, image_width.For example python mxnet_analyser.py example/mobilenet_mxnet_symbol.py get_symbol 1,3,224,224