package tensorflow

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message AllocationDescription

allocation_description.proto:9

Used in: NodeExecStats, TensorDescription

message AllocatorMemoryUsed

step_stats.proto:16

Used in: NodeExecStats

message AssetFileDef

meta_graph.proto:275

An asset file def for a single file or a set of sharded files with the same name.

Used in: MetaGraphDef

message AttrValue

attr_value.proto:16

Protocol buffer representing the value for an attr used to configure an Op. Comment indicates the corresponding attr type. Only the field matching the attr type may be filled.

Used in: FunctionDef, FunctionDef.Node, KernelDef.AttrConstraint, NameAttrList, NodeDef, OpDef.AttrDef

message AttrValue.ListValue

attr_value.proto:18

LINT.IfChange

Used in: AttrValue

message AvailableDeviceInfo

test_log.proto:108

Matches DeviceAttributes

Used in: MachineConfiguration

message BenchmarkEntries

test_log.proto:48

Used in: TestResults

message BenchmarkEntry

test_log.proto:27

Each unit test or benchmark in a test or benchmark run provides some set of information. Here we provide some reasonable keys one would expect to see, with optional key/value pairs for things we haven't considered. This BenchmarkEntry should be emitted by each unit test or benchmark reporter.

Used in: BenchmarkEntries

message BuildConfiguration

test_log.proto:52

Used in: TestResults

message BundleEntryProto

tensor_bundle.proto:43

Describes the metadata related to a checkpointed tensor.

message BundleHeaderProto

tensor_bundle.proto:23

Special header that is associated with a bundle. TODO(zongheng,zhifengc): maybe in the future, we can add information about which binary produced this checkpoint, timestamp, etc. Sometime, these can be valuable debugging information. And if needed, these can be used as defensive information ensuring reader (binary version) of the checkpoint and the writer (binary version) must match within certain range, etc.

enum BundleHeaderProto.Endianness

tensor_bundle.proto:32

An enum indicating the endianness of the platform that produced this bundle. A bundle can only be read by a platform with matching endianness. Defaults to LITTLE, as most modern platforms are little-endian. Affects the binary tensor data bytes only, not the metadata in protobufs.

Used in: BundleHeaderProto

message CPUInfo

test_log.proto:68

Used in: MachineConfiguration

message CleanupAllRequest

worker.proto:112

Used as request type in: grpc.WorkerService.CleanupAll

message CleanupAllResponse

worker.proto:123

Used as response type in: grpc.WorkerService.CleanupAll

(message has no fields)

message CleanupGraphRequest

worker.proto:208

Used as request type in: grpc.WorkerService.CleanupGraph

message CleanupGraphResponse

worker.proto:212

Used as response type in: grpc.WorkerService.CleanupGraph

(message has no fields)

message CloseSessionRequest

master.proto:182

Used as request type in: grpc.MasterService.CloseSession

message CloseSessionResponse

master.proto:188

Used as response type in: grpc.MasterService.CloseSession

(message has no fields)

message ClusterDef

tensorflow_server.proto:84

Defines a TensorFlow cluster as a set of jobs.

Used in: ServerDef

message CollectionDef

meta_graph.proto:137

CollectionDef should cover most collections. To add a user-defined collection, do one of the following: 1. For simple data types, such as string, int, float: tf.add_to_collection("your_collection_name", your_simple_value) strings will be stored as bytes_list. 2. For Protobuf types, there are three ways to add them: 1) tf.add_to_collection("your_collection_name", your_proto.SerializeToString()) collection_def { key: "user_defined_bytes_collection" value { bytes_list { value: "queue_name: \"test_queue\"\n" } } } or 2) tf.add_to_collection("your_collection_name", str(your_proto)) collection_def { key: "user_defined_string_collection" value { bytes_list { value: "\n\ntest_queue" } } } or 3) any_buf = any_pb2.Any() tf.add_to_collection("your_collection_name", any_buf.Pack(your_proto)) collection_def { key: "user_defined_any_collection" value { any_list { value { type_url: "type.googleapis.com/tensorflow.QueueRunnerDef" value: "\n\ntest_queue" } } } } 3. For Python objects, implement to_proto() and from_proto(), and register them in the following manner: ops.register_proto_function("your_collection_name", proto_type, to_proto=YourPythonObject.to_proto, from_proto=YourPythonObject.from_proto) These functions will be invoked to serialize and de-serialize the collection. For example, ops.register_proto_function(ops.GraphKeys.GLOBAL_VARIABLES, proto_type=variable_pb2.VariableDef, to_proto=Variable.to_proto, from_proto=Variable.from_proto)

Used in: MetaGraphDef

message CollectionDef.AnyList

meta_graph.proto:180

AnyList is used for collecting Any protos.

Used in: CollectionDef

message CollectionDef.BytesList

meta_graph.proto:165

BytesList is used for collecting strings and serialized protobufs. For example: collection_def { key: "trainable_variables" value { bytes_list { value: "\n\017conv1/weights:0\022\024conv1/weights/Assign \032\024conv1/weights/read:0" value: "\n\016conv1/biases:0\022\023conv1/biases/Assign\032 \023conv1/biases/read:0" } } }

Used in: CollectionDef

message CollectionDef.FloatList

meta_graph.proto:175

FloatList is used for collecting float values.

Used in: CollectionDef

message CollectionDef.Int64List

meta_graph.proto:170

Int64List is used for collecting int, int64 and long values.

Used in: CollectionDef

message CollectionDef.NodeList

meta_graph.proto:148

NodeList is used for collecting nodes in graph. For example collection_def { key: "summaries" value { node_list { value: "input_producer/ScalarSummary:0" value: "shuffle_batch/ScalarSummary:0" value: "ImageSummary:0" } }

Used in: CollectionDef

message CommitId

test_log.proto:58

Used in: TestResults

message CondContextDef

control_flow.proto:21

Protocol buffer representing a CondContext object.

message ConfigProto

config.proto:135

Session configuration parameters. The system picks appropriate values for fields that are not set.

Used in: CreateSessionRequest, ServerDef

message CostGraphDef

cost_graph.proto:12

Used in: RunGraphResponse, RunMetadata

message CostGraphDef.Node

cost_graph.proto:13

Used in: CostGraphDef

message CostGraphDef.Node.InputInfo

cost_graph.proto:27

Inputs of this node. They must be executed before this node can be executed. An input is a particular output of another node, specified by the node id and the output index.

Used in: Node

message CostGraphDef.Node.OutputInfo

cost_graph.proto:34

Outputs of this node.

Used in: Node

message CreateSessionRequest

master.proto:35

Used as request type in: grpc.MasterService.CreateSession

message CreateSessionResponse

master.proto:43

Used as response type in: grpc.MasterService.CreateSession

enum DataType

types.proto:10

LINT.IfChange

Used in: AttrValue, AttrValue.ListValue, BundleEntryProto, CostGraphDef.Node.OutputInfo, OpDef.ArgDef, SavedSliceMeta, TensorDescription, TensorInfo, TensorProto

message DebugTensorWatch

config.proto:213

EXPERIMENTAL. Option for watching a node.

Used in: RunOptions

message DeregisterGraphRequest

worker.proto:96

Used as request type in: grpc.WorkerService.DeregisterGraph

message DeregisterGraphResponse

worker.proto:102

TODO(mrry): Optionally add summary stats for the graph.

Used as response type in: grpc.WorkerService.DeregisterGraph

(message has no fields)

message DeviceAttributes

device_attributes.proto:15

Used in: GetStatusResponse, ListDevicesResponse

message DeviceLocality

device_attributes.proto:9

Used in: DeviceAttributes, RecvTensorRequest

message DeviceStepStats

step_stats.proto:47

Used in: StepStats

message EntryValue

test_log.proto:13

Used in: BenchmarkEntry

message Event

event.proto:13

Protocol buffer representing an event that happened during the execution of a Brain model.

message ExecutorOpts

worker.proto:148

Options specific to the execution of a single step.

Used in: RunGraphRequest

message ExtendSessionRequest

master.proto:73

Used as request type in: grpc.MasterService.ExtendSession

message ExtendSessionResponse

master.proto:89

TODO(mrry): Return something about the operation?

Used as response type in: grpc.MasterService.ExtendSession

message FunctionDef

function.proto:25

A function can be instantiated when the runtime can bind every attr with a value. When a GraphDef has a call to a function, it must have binding for every attr defined in the signature. TODO(zhifengc): * device spec, etc.

Used in: FunctionDefLibrary

message FunctionDef.Node

function.proto:43

A node is a multi-value assignment: (ret[0], ret[1], ...) = func(arg[0], arg[1], ...) By convention, "func" is resolved by consulting with a user-defined library first. If not resolved, "func" is assumed to be a builtin op.

Used in: FunctionDef

message FunctionDefLibrary

function.proto:14

A library is a set of named functions.

Used in: GraphDef

message GPUInfo

test_log.proto:93

message GPUOptions

config.proto:13

Used in: ConfigProto

message GetStatusRequest

worker.proto:38

Used as request type in: grpc.WorkerService.GetStatus

(message has no fields)

message GetStatusResponse

worker.proto:41

Used as response type in: grpc.WorkerService.GetStatus

message GradientDef

function.proto:148

GradientDef defines the gradient function of a function defined in a function library. A gradient function g (specified by gradient_func) for a function f (specified by function_name) must follow the following: The function 'f' must be a numerical function which takes N inputs and produces M outputs. Its gradient function 'g', which is a function taking N + M inputs and produces N outputs. I.e. if we have (y1, y2, ..., y_M) = f(x1, x2, ..., x_N), then, g is (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N, dL/dy1, dL/dy2, ..., dL/dy_M), where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the loss function). dL/dx_i is the partial derivative of L with respect to x_i.

Used in: FunctionDefLibrary

message GraphDef

graph.proto:14

Represents the graph of operations

Used in: CreateSessionRequest, ExtendSessionRequest, MetaGraphDef, RegisterGraphRequest, RunMetadata

message GraphOptions

config.proto:83

Used in: ConfigProto, RegisterGraphRequest

message HistogramProto

summary.proto:20

Serialization format for histogram module in core/lib/histogram/histogram.h

Used in: Summary.Value

message JobDef

tensorflow_server.proto:68

Defines a single job in a TensorFlow cluster.

Used in: ClusterDef

message KernelDef

kernel_def.proto:11

message KernelDef.AttrConstraint

kernel_def.proto:18

Used in: KernelDef

message LabeledStepStats

worker.proto:282

Used in: LoggingResponse

message ListDevicesRequest

master.proto:214

Used as request type in: grpc.MasterService.ListDevices

(message has no fields)

message ListDevicesResponse

master.proto:217

Used as response type in: grpc.MasterService.ListDevices

message LogMessage

event.proto:43

Protocol buffer used for logging messages to the events file.

Used in: Event

enum LogMessage.Level

event.proto:44

Used in: LogMessage

message LoggingRequest

worker.proto:269

Out-of-band request to begin or end logging, or to retrieve logs for particular steps.

Used as request type in: grpc.WorkerService.Logging

message LoggingResponse

worker.proto:287

Used as response type in: grpc.WorkerService.Logging

message MachineConfiguration

test_log.proto:115

Used in: TestResults

message MemmappedFileSystemDirectory

memmapped_file_system.proto:27

A directory of regions in a memmapped file.

message MemmappedFileSystemDirectoryElement

memmapped_file_system.proto:21

A message that describes one region of memmapped file.

Used in: MemmappedFileSystemDirectory

message MemoryInfo

test_log.proto:88

Used in: MachineConfiguration

message MemoryLogRawAllocation

log_memory.proto:55

message MemoryLogRawDeallocation

log_memory.proto:76

message MemoryLogStep

log_memory.proto:11

message MemoryLogTensorAllocation

log_memory.proto:19

message MemoryLogTensorDeallocation

log_memory.proto:31

message MemoryLogTensorOutput

log_memory.proto:40

message MetaGraphDef

meta_graph.proto:31

NOTE: This protocol buffer is evolving, and will go through revisions in the coming months. Protocol buffer containing the following which are necessary to restart training, run inference. It can be used to serialize/de-serialize memory objects necessary for running computation in a graph when crossing the process boundary. It can be used for long term storage of graphs, cross-language execution of graphs, etc. MetaInfoDef GraphDef SaverDef CollectionDef TensorInfo SignatureDef

Used in: SavedModel

message MetaGraphDef.MetaInfoDef

meta_graph.proto:34

Meta information regarding the graph to be exported. To be used by users of this protocol buffer to encode information regarding their meta graph.

Used in: MetaGraphDef

message NameAttrList

attr_value.proto:59

A list of attr names and their values. The whole list is attached with a string name. E.g., MatMul[T=float].

Used in: AttrValue

message NamedTensor

worker.proto:139

A pair of tensor name and tensor values.

Used in: RunGraphRequest, RunGraphResponse

message NamedTensorProto

named_tensor.proto:12

A pair of tensor name and tensor values.

Used in: RunStepRequest, RunStepResponse

message NodeDef

node_def.proto:11

Used in: FunctionDef, GraphDef

message NodeExecStats

step_stats.proto:29

Time/size stats recorded for a single execution of a graph node.

Used in: DeviceStepStats

message NodeOutput

step_stats.proto:23

Output sizes recorded for a single execution of a graph node.

Used in: NodeExecStats

message OpDef

op_def.proto:14

Defines an operation. A NodeDef in a GraphDef specifies an Op by using the "op" field which should match the name of a OpDef.

Used in: FunctionDef, OpList

message OpDef.ArgDef

op_def.proto:20

For describing inputs and outputs.

Used in: OpDef

message OpDef.AttrDef

op_def.proto:59

Description of the graph-construction-time configuration of this Op. That is to say, this describes the attr fields that will be specified in the NodeDef.

Used in: OpDef

message OpDeprecation

op_def.proto:146

Information about version-dependent deprecation of an op

Used in: OpDef

message OpList

op_def.proto:155

A collection of OpDefs

Used in: MetaGraphDef.MetaInfoDef

message OptimizerOptions

config.proto:58

Options passed to the graph optimizer

Used in: GraphOptions

enum OptimizerOptions.Level

config.proto:69

Optimization level

Used in: OptimizerOptions

message PartialRunSetupRequest

master.proto:150

Used as request type in: grpc.MasterService.PartialRunSetup

message PartialRunSetupResponse

master.proto:169

Used as response type in: grpc.MasterService.PartialRunSetup

message PlatformInfo

test_log.proto:99

Used in: MachineConfiguration

message QueueRunnerDef

queue_runner.proto:12

Protocol buffer representing a QueueRunner.

message ReaderBaseState

reader_base.proto:11

For serializing and restoring the state of ReaderBase, see reader_base.h for details.

message RecvTensorRequest

worker.proto:221

Used as request type in: grpc.WorkerService.RecvTensor

message RecvTensorResponse

worker.proto:242

Used as response type in: grpc.WorkerService.RecvTensor

message RegisterGraphRequest

worker.proto:59

Used as request type in: grpc.WorkerService.RegisterGraph

message RegisterGraphResponse

worker.proto:76

Used as response type in: grpc.WorkerService.RegisterGraph

message ResetRequest

master.proto:191

Used as request type in: grpc.MasterService.Reset

message ResetResponse

master.proto:202

Used as response type in: grpc.MasterService.Reset

(message has no fields)

message ResourceHandle

resource_handle.proto:12

Protocol buffer representing a handle to a tensorflow resource. Handles are not valid across executions, but can be serialized back and forth from within a single run.

Used in: TensorProto

message RunConfiguration

test_log.proto:138

Run-specific items such as arguments to the test / benchmark.

Used in: TestResults

message RunGraphRequest

worker.proto:153

Used as request type in: grpc.WorkerService.RunGraph

message RunGraphResponse

worker.proto:182

Used as response type in: grpc.WorkerService.RunGraph

message RunMetadata

config.proto:263

EXPERIMENTAL. Metadata output (i.e., non-Tensor) for a single Run() call.

Used in: RunStepResponse

message RunOptions

config.proto:237

EXPERIMENTAL. Options for a single Run() call.

Used in: RunStepRequest

enum RunOptions.TraceLevel

config.proto:240

TODO(pbar) Turn this into a TraceOptions proto which allows tracing to be controlled in a more orthogonal manner?

Used in: RunOptions

message RunStepRequest

master.proto:106

Used as request type in: grpc.MasterService.RunStep

message RunStepResponse

master.proto:131

Used as response type in: grpc.MasterService.RunStep

message SaveSliceInfoDef

variable.proto:24

Used in: VariableDef

message SavedModel

saved_model.proto:13

SavedModel is the high level serialization format for TensorFlow Models. See [todo: doc links, similar to session_bundle] for more information.

message SavedSlice

saved_tensor_slice.proto:61

Saved tensor slice: it stores the name of the tensors, the slice, and the raw data.

Used in: SavedTensorSlices

message SavedSliceMeta

saved_tensor_slice.proto:34

Metadata describing the set of slices of the same tensor saved in a checkpoint file.

Used in: SavedTensorSliceMeta

message SavedTensorSliceMeta

saved_tensor_slice.proto:50

Metadata describing the set of tensor slices saved in a checkpoint file. It is always stored at the beginning of each checkpoint file.

Used in: SavedTensorSlices

message SavedTensorSlices

saved_tensor_slice.proto:77

Each record in a v3 checkpoint file is a serialized SavedTensorSlices message.

message SaverDef

saver.proto:10

Protocol buffer representing the configuration of a Saver.

Used in: MetaGraphDef

enum SaverDef.CheckpointFormatVersion

saver.proto:37

A version number that identifies a different on-disk checkpoint format. Usually, each subclass of BaseSaverBuilder works with a particular version/format. However, it is possible that the same builder may be upgraded to support a newer checkpoint format in the future.

Used in: SaverDef

message ServerDef

tensorflow_server.proto:90

Defines the configuration of a single TensorFlow server.

message SessionLog

event.proto:57

Protocol buffer used for logging session state.

Used in: Event

enum SessionLog.SessionStatus

event.proto:58

Used in: SessionLog

message SignatureDef

meta_graph.proto:257

SignatureDef defines the signature of a computation supported by a TensorFlow graph. For example, a model with two loss computations, sharing a single input, might have the following signature_def map. Note that across the two SignatureDefs "loss_A" and "loss_B", the input key, output key, and method_name are identical, and will be used by system(s) that implement or rely upon this particular loss method. The output tensor names differ, demonstrating how different outputs can exist for the same method. signature_def { key: "loss_A" value { inputs { key: "input" value { name: "input:0" dtype: DT_STRING tensor_shape: ... } } outputs { key: "loss_output" value { name: "loss_output_A:0" dtype: DT_FLOAT tensor_shape: ... } } } ... method_name: "some/package/compute_loss" } signature_def { key: "loss_B" value { inputs { key: "input" value { name: "input:0" dtype: DT_STRING tensor_shape: ... } } outputs { key: "loss_output" value { name: "loss_output_B:0" dtype: DT_FLOAT tensor_shape: ... } } } ... method_name: "some/package/compute_loss" }

Used in: MetaGraphDef

message StepStats

step_stats.proto:52

Used in: LabeledStepStats, RunGraphResponse, RunMetadata

message Summary

summary.proto:42

A Summary is a set of named values to be displayed by the visualizer. Summaries are produced regularly during training, as controlled by the "summary_interval_secs" attribute of the training operation. Summaries are also produced at the end of an evaluation.

Used in: Event

message Summary.Audio

summary.proto:60

Used in: Value

message Summary.Image

summary.proto:43

Used in: Value

message Summary.Value

summary.proto:73

Used in: Summary

message SummaryDescription

summary.proto:12

Metadata associated with a series of Summary data

message TaggedRunMetadata

event.proto:72

For logging the metadata output for a single session.run() call.

Used in: Event

message TensorDescription

tensor_description.proto:13

Used in: MemoryLogTensorAllocation, MemoryLogTensorOutput, NodeOutput

message TensorInfo

meta_graph.proto:194

Information about a Tensor necessary for feeding or retrieval.

Used in: AssetFileDef, SignatureDef

message TensorProto

tensor.proto:14

Protocol buffer representing a tensor.

Used in: AttrValue, AttrValue.ListValue, NamedTensor, NamedTensorProto, RecvTensorResponse, SavedSlice, Summary.Value, serving.PredictRequest, serving.PredictResponse

message TensorShapeProto

tensor_shape.proto:12

Dimensions of a tensor.

Used in: AttrValue, AttrValue.ListValue, BundleEntryProto, CostGraphDef.Node.OutputInfo, SavedSliceMeta, TensorDescription, TensorInfo, TensorProto

message TensorShapeProto.Dim

tensor_shape.proto:14

One dimension of the tensor.

Used in: TensorShapeProto

message TensorSliceProto

tensor_slice.proto:12

Can only be interpreted if you know the corresponding TensorShape.

Used in: BundleEntryProto, SavedSlice, SavedSliceMeta

message TensorSliceProto.Extent

tensor_slice.proto:14

Extent of the slice in one dimension.

Either both or no attributes must be set. When no attribute is set means: All data in that dimension.

Used in: TensorSliceProto

message TestResults

test_log.proto:149

The output of one benchmark / test run. Each run contains a list of tests or benchmarks, stored as BenchmarkEntry messages. This message should be emitted by the reporter (which runs the test / BM in a subprocess and then reads the emitted BenchmarkEntry messages; usually from a serialized json file, finally collecting them along with additional information about the test run.

message ThreadPoolOptionProto

config.proto:125

Used in: ConfigProto

message TraceOpts

worker.proto:300

Used in: TracingRequest

message TracingRequest

worker.proto:318

Out-of-band request to configure distributed tracing.

Used as request type in: grpc.WorkerService.Tracing

message TracingResponse

worker.proto:322

Used as response type in: grpc.WorkerService.Tracing

(message has no fields)

message ValuesDef

control_flow.proto:12

Protocol buffer representing the values in ControlFlowContext.

Used in: CondContextDef, WhileContextDef

message VariableDef

variable.proto:10

Protocol buffer representing a Variable.

message VersionDef

versions.proto:22

Version information for a piece of serialized data There are different types of versions for each type of data (GraphDef, etc.), but they all have the same common shape described here. Each consumer has "consumer" and "min_producer" versions (specified elsewhere). A consumer is allowed to consume this data if producer >= min_producer consumer >= min_consumer consumer not in bad_consumers

Used in: BundleHeaderProto, GraphDef, SavedTensorSliceMeta

message WhileContextDef

control_flow.proto:39

Protocol buffer representing a WhileContext object.