meshnet is a (K8s) CNI plugin to create arbitrary network topologies out of point-to-point links with the help of koko. Heavily inspired by Ratchet-CNI, kokonet and Multus.
The goal of this plugin is to interconnect pods via direct point-to-point links according to a pre-define topology. To do that, the plugin uses three types of links:
Topology information, represented as a list of links per pod, is stored in k8s's etcd datastore as custom resources:
apiVersion: networkop.co.uk/v1beta1
kind: Topology
metadata:
name: r1
spec:
links:
- uid: 1
peer_pod: r2
local_intf: eth1
local_ip: 12.12.12.1/24
peer_intf: eth1
peer_ip: 12.12.12.2/24
The plugin configuration file contains a "chained" meshnet in the list of plugins:
{
"cniVersion": "0.3.1",
"name": "kindnet",
"plugins": [
{
"ipMasq": false,
"ipam": {
"dataDir": "/run/cni-ipam-state",
"ranges": [
[
{
"subnet": "10.244.0.0/24"
}
]
],
"routes": [
{
"dst": "0.0.0.0/0"
}
],
"type": "host-local"
},
"mtu": 1500,
"type": "ptp"
},
{
"capabilities": {
"portMappings": true
},
"type": "portmap"
},
{
"name": "meshnet",
"type": "meshnet",
"ipam": {},
"dns": {}
}
]
}
The plugin consists of three main components:
Below is the order of operation of the plugin from the perspective of kube-node-1:
meshnet binary for each pod to setup their networking.Note that
eth0is always setup by one of the existing CNI plugins. It is used to provide external connectivity to and from the pod
links and looks up peer pod's metadata to identify what kind of link to setup - veth, vxlan or macvlan.veth link between the two pods.vxlan link.Update call to the remote node's meshnet daemon, specifying this link's metadata (e.g. VTEP IP and VNI).meshnetd idepmotently updates the local vxlan link, i.e. it creates a new link, updates the existing link if there's a change or does nothing if the link attributes are the same.Clone this project and build a local 3-node Kubernetes cluster
make up
Build the meshnet-cni docker image
make docker
Install meshnet-cni plugin
# install meshnet with VXLAN link
make install
# or install meshnet with gRPC link
make grpc=1 install
Verify that meshnet is up and READY
kubectl get daemonset -n meshnet
Install a 3-node test topology
kubectl apply -f tests/3node.yml
Check that all pods are running
kubectl get pods -l test=3node
NAME READY STATUS RESTARTS AGE
r1 1/1 Running 0 40m
r2 1/1 Running 0 40m
r3 1/1 Running 0 40s
Test connectivity between pods
kubectl exec r1 -- ping -c 1 12.12.12.2
kubectl exec r2 -- ping -c 1 23.23.23.3
kubectl exec r3 -- ping -c 1 13.13.13.1
Cleanup
kubectl delete --grace-period=0 --force -f tests/3node.yml
Destroy the local kind cluster
make down
The following manifest will create all that's required for meshnet plugin to function, i.e.:
meshnet namespace# to install meshnet with VXLAN link
kubectl apply -k manifests/base
# to install meshnet with gRPC link
kubectl apply -k manifests/overlays/grpc-link
Meshnet plugin was designed to work alongside any other existing or future Kubernetes resources that may not require any special topology to be set up for them. Every pod coming up will have its first interface setup by an existing CNI plugin (e.g. flannel, weave, calico) and will only have additional interfaces connected if there's a matching custom Topology resource.
During the initial installation process, meshnet will try to insert itself into the list of CNI plugins. For example, assuming the following configuration is present in /etc/cni/net.d/weave.conf:
{
"cniVersion": "0.2.0",
"name": "weave",
"type": "weave-net",
}
Meshnet will convert the above to conflist and produce the file /etc/cni/net.d/00-meshnet.conflist with the following content:
{
"cniVersion": "0.2.0",
"name": "weave",
"plugins": [
{
"cniVersion": "0.2.0",
"name": "weave",
"type": "weave-net"
},
{
"name": "meshnet",
"type": "meshnet",
"ipam": {},
"dns": {}
}
]
}
In some cases, Kubernetes distros may store CNI configuration files and binaries in non-standard directories and override them with --cni-bin-dir and --cni-conf-dir flags. In order to install meshnet into the right directories, create a new overlay under manifests/overlays and patch the cni-dir or cni-bin volumes with the correct location. See kops overlay for an example.
If you need to have Pods restarted and re-scheduled by the kube-controller, it's possible to deploy them as StatefulSets with replica number = 1. See this example.
Inside the tests directory there are 4 manifests with the following test topologies:
Login the K8s master node and
git clone https://github.com/networkop/k8s-topo.git && cd k8s-topo
Deploy k8s-topo pod
kubectl create -f manifest.yml
Connect to the k8s-topo pod
kubectl exec -it k8s-topo sh
Create a random 20-node network topology
./examples/builder/builder 20 0
Total number of links generated: 19
Create the topology inside K8s
k8s-topo --create examples/builder/random.yml
Optionally, you can generate a D3.js network topology graph
k8s-topo --graph examples/builder/random.yml
View the generated topology graph at http://<any_k8s_cluster_node_ip>:32000
Verify that the topology has been deployed (from the master node)
kubectl get pods -o wide | grep qrtr
qrtr-1 1/1 Running 0 11s 10.233.65.231 node3 <none>
qrtr-10 1/1 Running 0 11s 10.233.65.234 node3 <none>
qrtr-11 1/1 Running 0 10s 10.233.66.246 node4 <none>
Login the first node and verify connectivity to every other loopback
$ qrtr-1
/ # for i in `seq 0 20`; do echo "192.0.2.$i =>" $(ping -c 1 -W 1 192.0.2.$i|grep loss); done
192.0.2.0 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.1 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.2 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.3 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.4 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.5 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.6 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.7 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.8 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.9 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.10 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.11 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.12 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.13 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.14 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.15 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.16 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.17 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.18 => 1 packets transmitted, 1 packets received, 0% packet loss
192.0.2.19 => 1 packets transmitted, 1 packets received, 0% packet loss
Destroy the topology
k8s-topo --destroy examples/builder/random.yml
There are two places to collect meshnet logs:
stern meshnet -n meshnet
root@kind-worker:/# journalctl -u kubelet
Each POD is supposed to run an init-wait container that waits for the right number of interface to be connected before passing the ball to the main container. However, sometimes, PODs restart resulting in the missing interfaces inside the main container process, since they may have been added AFTER the process that reads the container interface list (e.g. qemu-kvm for VM-based containers). This is the procedure I use to identify the cause of the failure:
kubectl get events --sort-by=.metadata.creationTimestamp'kubectl get pods acme-scs1001-a -o yaml | grep nodejournalctl for any errors associated with the POD