package onnx

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message AttributeProto

onnx.proto:118

Attributes A named attribute containing either singular float, integer, string, graph, and tensor values, or repeated float, integer, string, graph, and tensor values. An AttributeProto MUST contain the name field, and *only one* of the following content fields, effectively enforcing a C/C++ union equivalent.

Used in: FunctionProto, NodeProto

enum AttributeProto.AttributeType

onnx.proto:122

Note: this enum is structurally identical to the OpSchema::AttrType enum defined in schema.h. If you rev one, you likely need to rev the other.

Used in: AttributeProto

message FunctionProto

onnx.proto:777

Used in: ModelProto

message GraphProto

onnx.proto:443

Graphs A graph defines the computational logic of a model and is comprised of a parameterized list of nodes that form a directed acyclic graph based on their inputs and outputs. This is the equivalent of the "network" or "graph" in many deep learning frameworks.

Used in: AttributeProto, ModelProto, TrainingInfoProto

message ModelProto

onnx.proto:344

Models ModelProto is a top-level file/container format for bundling a ML model and associating its computation graph with metadata. The semantics of the model are described by the associated GraphProto's.

message NodeProto

onnx.proto:200

Nodes Computation graphs are made up of a DAG of nodes, which represent what is commonly called a "layer" or "pipeline stage" in machine learning frameworks. For example, it can be a node of type "Conv" that takes in an image, a filter tensor and a bias tensor, and produces the convolved output.

Used in: FunctionProto, GraphProto

message OperatorSetIdProto

onnx.proto:759

Operator Sets OperatorSets are uniquely identified by a (domain, opset_version) pair.

Used in: FunctionProto, ModelProto

enum OperatorStatus

onnx.proto:772

Operator/function status.

message SparseTensorProto

onnx.proto:635

A serialized sparse-tensor value

Used in: AttributeProto, GraphProto

message StringStringEntryProto

onnx.proto:421

StringStringEntryProto follows the pattern for cross-proto-version maps. See https://developers.google.com/protocol-buffers/docs/proto3#maps

Used in: ModelProto, TensorAnnotation, TensorProto, TrainingInfoProto

message TensorAnnotation

onnx.proto:426

Used in: GraphProto

message TensorProto

onnx.proto:483

Tensors A serialized tensor value.

Used in: AttributeProto, GraphProto, SparseTensorProto

enum TensorProto.DataLocation

onnx.proto:611

Location of the data for this tensor. MUST be one of: - DEFAULT - data stored inside the protobuf message. Data is stored in raw_data (if set) otherwise in type-specified field. - EXTERNAL - data stored in an external location as described by external_data field.

Used in: TensorProto

enum TensorProto.DataType

onnx.proto:484

message TensorProto.Segment

onnx.proto:536

For very large tensors, we may want to store them in chunks, in which case the following fields will specify the segment that is stored in the current TensorProto.

Used in: TensorProto

message TensorShapeProto

onnx.proto:661

Defines a tensor shape. A dimension can be either an integer value or a symbolic variable. A symbolic variable represents an unknown dimension.

Used in: TypeProto.SparseTensor, TypeProto.Tensor

message TensorShapeProto.Dimension

onnx.proto:662

Used in: TensorShapeProto

message TrainingInfoProto

onnx.proto:239

Training information TrainingInfoProto stores information for training a model. In particular, this defines two functionalities: an initialization-step and a training-algorithm-step. Initialization resets the model back to its original state as if no training has been performed. Training algorithm improves the model based on input data. The semantics of the initialization-step is that the initializers in ModelProto.graph and in TrainingInfoProto.algorithm are first initialized as specified by the initializers in the graph, and then updated by the "initialization_binding" in every instance in ModelProto.training_info. The field "algorithm" defines a computation graph which represents a training algorithm's step. After the execution of a TrainingInfoProto.algorithm, the initializers specified by "update_binding" may be immediately updated. If the targeted training algorithm contains consecutive update steps (such as block coordinate descent methods), the user needs to create a TrainingInfoProto for each step.

Used in: ModelProto

message TypeProto

onnx.proto:680

Types The standard ONNX data types.

Used in: AttributeProto, TypeProto.Map, TypeProto.Optional, TypeProto.Sequence, ValueInfoProto

message TypeProto.Map

onnx.proto:698

map<K,V>

Used in: TypeProto

message TypeProto.Optional

onnx.proto:708

wrapper for Tensor, Sequence, or Map

Used in: TypeProto

message TypeProto.Sequence

onnx.proto:691

repeated T

Used in: TypeProto

message TypeProto.SparseTensor

onnx.proto:716

Used in: TypeProto

message TypeProto.Tensor

onnx.proto:682

Used in: TypeProto

message ValueInfoProto

onnx.proto:183

Defines information on value, including the name, the type, and the shape of the value.

Used in: GraphProto

enum Version

onnx.proto:50

Versioning ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md To be compatible with both proto2 and proto3, we will use a version number that is not defined by the default value but an explicit enum number.