package google.protobuf

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message Any

any.proto:112

`Any` contains an arbitrary serialized protocol buffer message along with a URL that describes the type of the serialized message. Protobuf library provides support to pack/unpack Any values in the form of utility functions or additional generated methods of the Any type. Example 1: Pack and unpack a message in C++. Foo foo = ...; Any any; any.PackFrom(foo); ... if (any.UnpackTo(&foo)) { ... } Example 2: Pack and unpack a message in Java. Foo foo = ...; Any any = Any.pack(foo); ... if (any.is(Foo.class)) { foo = any.unpack(Foo.class); } Example 3: Pack and unpack a message in Python. foo = Foo(...) any = Any() any.Pack(foo) ... if any.Is(Foo.DESCRIPTOR): any.Unpack(foo) ... The pack methods provided by protobuf library will by default use 'type.googleapis.com/full.type.name' as the type URL and the unpack methods only use the fully qualified type name after the last '/' in the type URL, for example "foo.bar.com/x/y.z" will yield type name "y.z". JSON ==== The JSON representation of an `Any` value uses the regular representation of the deserialized, embedded message, with an additional field `@type` which contains the type URL. Example: package google.profile; message Person { string first_name = 1; string last_name = 2; } { "@type": "type.googleapis.com/google.profile.Person", "firstName": <string>, "lastName": <string> } If the embedded message type is well-known and has a custom JSON representation, that representation will be embedded adding a field `value` which holds the custom JSON in addition to the `@type` field. Example (for message [google.protobuf.Duration][]): { "@type": "type.googleapis.com/google.protobuf.Duration", "value": "1.212s" }

Used in: Option

message Api

api.proto:46

Api is a light-weight descriptor for a protocol buffer service.

message BoolValue

wrappers.proto:99

Wrapper message for `bool`. The JSON representation for `BoolValue` is JSON `true` and `false`.

message BytesValue

wrappers.proto:115

Wrapper message for `bytes`. The JSON representation for `BytesValue` is JSON string.

message DescriptorProto

descriptor.proto:92

Describes a message type.

Used in: FileDescriptorProto

message DescriptorProto.ExtensionRange

descriptor.proto:101

Used in: DescriptorProto

message DescriptorProto.ReservedRange

descriptor.proto:114

Range of reserved tag numbers. Reserved tag numbers may not be used by fields or extension ranges in the same message. Reserved ranges may not overlap.

Used in: DescriptorProto

message DoubleValue

wrappers.proto:51

Wrapper message for `double`. The JSON representation for `DoubleValue` is JSON number.

message Duration

duration.proto:103

A Duration represents a signed, fixed-length span of time represented as a count of seconds and fractions of seconds at nanosecond resolution. It is independent of any calendar and concepts like "day" or "month". It is related to Timestamp in that the difference between two Timestamp values is a Duration and it can be added or subtracted from a Timestamp. Range is approximately +-10,000 years. # Examples Example 1: Compute Duration from two Timestamps in pseudo code. Timestamp start = ...; Timestamp end = ...; Duration duration = ...; duration.seconds = end.seconds - start.seconds; duration.nanos = end.nanos - start.nanos; if (duration.seconds < 0 && duration.nanos > 0) { duration.seconds += 1; duration.nanos -= 1000000000; } else if (durations.seconds > 0 && duration.nanos < 0) { duration.seconds -= 1; duration.nanos += 1000000000; } Example 2: Compute Timestamp from Timestamp + Duration in pseudo code. Timestamp start = ...; Duration duration = ...; Timestamp end = ...; end.seconds = start.seconds + duration.seconds; end.nanos = start.nanos + duration.nanos; if (end.nanos < 0) { end.seconds -= 1; end.nanos += 1000000000; } else if (end.nanos >= 1000000000) { end.seconds += 1; end.nanos -= 1000000000; } Example 3: Compute Duration from datetime.timedelta in Python. td = datetime.timedelta(days=3, minutes=10) duration = Duration() duration.FromTimedelta(td) # JSON Mapping In JSON format, the Duration type is encoded as a string rather than an object, where the string ends in the suffix "s" (indicating seconds) and is preceded by the number of seconds, with nanoseconds expressed as fractional seconds. For example, 3 seconds with 0 nanoseconds should be encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should be expressed in JSON format as "3.000000001s", and 3 seconds and 1 microsecond should be expressed in JSON format as "3.000001s".

message Empty

empty.proto:52

A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for `Empty` is empty JSON object `{}`.

(message has no fields)

message Enum

type.proto:143

Enum type definition.

message EnumDescriptorProto

descriptor.proto:212

Describes an enum type.

Used in: DescriptorProto, FileDescriptorProto

message EnumOptions

descriptor.proto:556

Used in: EnumDescriptorProto

message EnumValue

type.proto:157

Enum value definition.

Used in: Enum

message EnumValueDescriptorProto

descriptor.proto:221

Describes a value within an enum.

Used in: EnumDescriptorProto

message EnumValueOptions

descriptor.proto:577

Used in: EnumValueDescriptorProto

message Field

type.proto:63

A single field of a message type.

Used in: Type

enum Field.Cardinality

type.proto:107

Whether a field is optional, required, or repeated.

Used in: Field

enum Field.Kind

type.proto:65

Basic field types.

Used in: Field

message FieldDescriptorProto

descriptor.proto:125

Describes a field within a message.

Used in: DescriptorProto, FileDescriptorProto

enum FieldDescriptorProto.Label

descriptor.proto:159

Used in: FieldDescriptorProto

enum FieldDescriptorProto.Type

descriptor.proto:126

Used in: FieldDescriptorProto

message FieldMask

field_mask.proto:243

`FieldMask` represents a set of symbolic field paths, for example: paths: "f.a" paths: "f.b.d" Here `f` represents a field in some root message, `a` and `b` fields in the message found in `f`, and `d` a field found in the message in `f.b`. Field masks are used to specify a subset of fields that should be returned by a get operation or modified by an update operation. Field masks also have a custom JSON encoding (see below). # Field Masks in Projections When used in the context of a projection, a response message or sub-message is filtered by the API to only contain those fields as specified in the mask. For example, if the mask in the previous example is applied to a response message as follows: f { a : 22 b { d : 1 x : 2 } y : 13 } z: 8 The result will not contain specific values for fields x,y and z (their value will be set to the default, and omitted in proto text output): f { a : 22 b { d : 1 } } A repeated field is not allowed except at the last position of a paths string. If a FieldMask object is not present in a get operation, the operation applies to all fields (as if a FieldMask of all fields had been specified). Note that a field mask does not necessarily apply to the top-level response message. In case of a REST get operation, the field mask applies directly to the response, but in case of a REST list operation, the mask instead applies to each individual message in the returned resource list. In case of a REST custom method, other definitions may be used. Where the mask applies will be clearly documented together with its declaration in the API. In any case, the effect on the returned resource/resources is required behavior for APIs. # Field Masks in Update Operations A field mask in update operations specifies which fields of the targeted resource are going to be updated. The API is required to only change the values of the fields as specified in the mask and leave the others untouched. If a resource is passed in to describe the updated values, the API ignores the values of all fields not covered by the mask. If a repeated field is specified for an update operation, the existing repeated values in the target resource will be overwritten by the new values. Note that a repeated field is only allowed in the last position of a `paths` string. If a sub-message is specified in the last position of the field mask for an update operation, then the existing sub-message in the target resource is overwritten. Given the target message: f { b { d : 1 x : 2 } c : 1 } And an update message: f { b { d : 10 } } then if the field mask is: paths: "f.b" then the result will be: f { b { d : 10 } c : 1 } However, if the update mask was: paths: "f.b.d" then the result would be: f { b { d : 10 x : 2 } c : 1 } In order to reset a field's value to the default, the field must be in the mask and set to the default value in the provided resource. Hence, in order to reset all fields of a resource, provide a default instance of the resource and set all fields in the mask, or do not provide a mask as described below. If a field mask is not present on update, the operation applies to all fields (as if a field mask of all fields has been specified). Note that in the presence of schema evolution, this may mean that fields the client does not know and has therefore not filled into the request will be reset to their default. If this is unwanted behavior, a specific service may require a client to always specify a field mask, producing an error if not. As with get operations, the location of the resource which describes the updated values in the request message depends on the operation kind. In any case, the effect of the field mask is required to be honored by the API. ## Considerations for HTTP REST The HTTP kind of an update operation which uses a field mask must be set to PATCH instead of PUT in order to satisfy HTTP semantics (PUT must only be used for full updates). # JSON Encoding of Field Masks In JSON, a field mask is encoded as a single string where paths are separated by a comma. Fields name in each path are converted to/from lower-camel naming conventions. As an example, consider the following message declarations: message Profile { User user = 1; Photo photo = 2; } message User { string display_name = 1; string address = 2; } In proto a field mask for `Profile` may look as such: mask { paths: "user.display_name" paths: "photo" } In JSON, the same mask is represented as below: { mask: "user.displayName,photo" } # Field Masks and Oneof Fields Field masks treat fields in oneofs just as regular fields. Consider the following message: message SampleMessage { oneof test_oneof { string name = 4; SubMessage sub_message = 9; } } The field mask can be: mask { paths: "name" } Or: mask { paths: "sub_message" } Note that oneof type names ("test_oneof" in this case) cannot be used in paths.

message FieldOptions

descriptor.proto:457

Used in: FieldDescriptorProto

enum FieldOptions.CType

descriptor.proto:463

Used in: FieldOptions

enum FieldOptions.JSType

descriptor.proto:488

Used in: FieldOptions

message FileDescriptorProto

descriptor.proto:60

Describes a complete .proto file.

Used in: FileDescriptorSet, compiler.CodeGeneratorRequest

message FileDescriptorSet

descriptor.proto:55

The protocol compiler can output a FileDescriptorSet containing the .proto files it parses.

message FileOptions

descriptor.proto:287

Used in: FileDescriptorProto

enum FileOptions.OptimizeMode

descriptor.proto:324

Generated classes can be optimized for speed or code size.

Used in: FileOptions

message FloatValue

wrappers.proto:59

Wrapper message for `float`. The JSON representation for `FloatValue` is JSON number.

message GeneratedCodeInfo

descriptor.proto:810

Describes the relationship between generated code and its original source file. A GeneratedCodeInfo message is associated with only one generated source file, but may contain references to different source .proto files.

message GeneratedCodeInfo.Annotation

descriptor.proto:814

Used in: GeneratedCodeInfo

message Int32Value

wrappers.proto:83

Wrapper message for `int32`. The JSON representation for `Int32Value` is JSON number.

message Int64Value

wrappers.proto:67

Wrapper message for `int64`. The JSON representation for `Int64Value` is JSON string.

message ListValue

struct.proto:93

`ListValue` is a wrapper around a repeated field of values. The JSON representation for `ListValue` is JSON array.

Used in: Value

message MessageOptions

descriptor.proto:392

Used in: DescriptorProto

message Method

api.proto:94

Method represents a method of an api.

Used in: Api

message MethodDescriptorProto

descriptor.proto:237

Describes a method of a service.

Used in: ServiceDescriptorProto

message MethodOptions

descriptor.proto:611

Used in: MethodDescriptorProto

enum MethodOptions.IdempotencyLevel

descriptor.proto:627

Is this method side-effect-free (or safe in HTTP parlance), or idempotent, or neither? HTTP based RPC implementation may choose GET verb for safe methods, and PUT verb for idempotent methods instead of the default POST.

Used in: MethodOptions

message Mixin

api.proto:195

Declares an API to be included in this API. The including API must redeclare all the methods from the included API, but documentation and options are inherited as follows: - If after comment and whitespace stripping, the documentation string of the redeclared method is empty, it will be inherited from the original method. - Each annotation belonging to the service config (http, visibility) which is not set in the redeclared method will be inherited. - If an http annotation is inherited, the path pattern will be modified as follows. Any version prefix will be replaced by the version of the including API plus the [root][] path if specified. Example of a simple mixin: package google.acl.v1; service AccessControl { // Get the underlying ACL object. rpc GetAcl(GetAclRequest) returns (Acl) { option (google.api.http).get = "/v1/{resource=**}:getAcl"; } } package google.storage.v2; service Storage { rpc GetAcl(GetAclRequest) returns (Acl); // Get a data record. rpc GetData(GetDataRequest) returns (Data) { option (google.api.http).get = "/v2/{resource=**}"; } } Example of a mixin configuration: apis: - name: google.storage.v2.Storage mixins: - name: google.acl.v1.AccessControl The mixin construct implies that all methods in `AccessControl` are also declared with same name and request/response types in `Storage`. A documentation generator or annotation processor will see the effective `Storage.GetAcl` method after inherting documentation and annotations as follows: service Storage { // Get the underlying ACL object. rpc GetAcl(GetAclRequest) returns (Acl) { option (google.api.http).get = "/v2/{resource=**}:getAcl"; } ... } Note how the version in the path pattern changed from `v1` to `v2`. If the `root` field in the mixin is specified, it should be a relative path under which inherited HTTP paths are placed. Example: apis: - name: google.storage.v2.Storage mixins: - name: google.acl.v1.AccessControl root: acls This implies the following inherited HTTP annotation: service Storage { // Get the underlying ACL object. rpc GetAcl(GetAclRequest) returns (Acl) { option (google.api.http).get = "/v2/acls/{resource=**}:getAcl"; } ... }

Used in: Api

enum NullValue

struct.proto:85

`NullValue` is a singleton enumeration to represent the null value for the `Value` type union. The JSON representation for `NullValue` is JSON `null`.

Used in: Value

message OneofDescriptorProto

descriptor.proto:206

Describes a oneof.

Used in: DescriptorProto

message OneofOptions

descriptor.proto:548

Used in: OneofDescriptorProto

message Option

type.proto:168

A protocol buffer option, which can be attached to a message, field, enumeration, etc.

Used in: Api, Enum, EnumValue, Field, Method, Type

message ServiceDescriptorProto

descriptor.proto:229

Describes a service.

Used in: FileDescriptorProto

message ServiceOptions

descriptor.proto:591

Used in: ServiceDescriptorProto

message SourceCodeInfo

descriptor.proto:676

Encapsulates information about the original source file from which a FileDescriptorProto was generated.

Used in: FileDescriptorProto

message SourceCodeInfo.Location

descriptor.proto:721

Used in: SourceCodeInfo

message SourceContext

source_context.proto:44

`SourceContext` represents information about the source of a protobuf element, like the file in which it is defined.

Used in: Api, Enum, Type

message StringValue

wrappers.proto:107

Wrapper message for `string`. The JSON representation for `StringValue` is JSON string.

message Struct

struct.proto:52

`Struct` represents a structured data value, consisting of fields which map to dynamically typed values. In some languages, `Struct` might be supported by a native representation. For example, in scripting languages like JS a struct is represented as an object. The details of that representation are described together with the proto support for the language. The JSON representation for `Struct` is JSON object.

Used in: Value

enum Syntax

type.proto:182

The syntax in which a protocol buffer element is defined.

Used in: Api, Enum, Method, Type

message Timestamp

timestamp.proto:121

A Timestamp represents a point in time independent of any time zone or calendar, represented as seconds and fractions of seconds at nanosecond resolution in UTC Epoch time. It is encoded using the Proleptic Gregorian Calendar which extends the Gregorian calendar backwards to year one. It is encoded assuming all minutes are 60 seconds long, i.e. leap seconds are "smeared" so that no leap second table is needed for interpretation. Range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings. See [https://www.ietf.org/rfc/rfc3339.txt](https://www.ietf.org/rfc/rfc3339.txt). # Examples Example 1: Compute Timestamp from POSIX `time()`. Timestamp timestamp; timestamp.set_seconds(time(NULL)); timestamp.set_nanos(0); Example 2: Compute Timestamp from POSIX `gettimeofday()`. struct timeval tv; gettimeofday(&tv, NULL); Timestamp timestamp; timestamp.set_seconds(tv.tv_sec); timestamp.set_nanos(tv.tv_usec * 1000); Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`. FILETIME ft; GetSystemTimeAsFileTime(&ft); UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime; // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. Timestamp timestamp; timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); timestamp.set_nanos((INT32) ((ticks % 10000000) * 100)); Example 4: Compute Timestamp from Java `System.currentTimeMillis()`. long millis = System.currentTimeMillis(); Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) .setNanos((int) ((millis % 1000) * 1000000)).build(); Example 5: Compute Timestamp from current time in Python. timestamp = Timestamp() timestamp.GetCurrentTime() # JSON Mapping In JSON format, the Timestamp type is encoded as a string in the [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required, though only UTC (as indicated by "Z") is presently supported. For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017. In JavaScript, one can convert a Date object to this format using the standard [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString] method. In Python, a standard `datetime.datetime` object can be converted to this format using [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use the Joda Time's [`ISODateTimeFormat.dateTime()`]( http://joda-time.sourceforge.net/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime()) to obtain a formatter capable of generating timestamps in this format.

message Type

type.proto:47

A protocol buffer message type.

message UInt32Value

wrappers.proto:91

Wrapper message for `uint32`. The JSON representation for `UInt32Value` is JSON number.

message UInt64Value

wrappers.proto:75

Wrapper message for `uint64`. The JSON representation for `UInt64Value` is JSON string.

message UninterpretedOption

descriptor.proto:649

A message representing a option the parser does not recognize. This only appears in options protos created by the compiler::Parser class. DescriptorPool resolves these when building Descriptor objects. Therefore, options protos in descriptor objects (e.g. returned by Descriptor::options(), or produced by Descriptor::CopyTo()) will never have UninterpretedOptions in them.

Used in: EnumOptions, EnumValueOptions, FieldOptions, FileOptions, MessageOptions, MethodOptions, OneofOptions, ServiceOptions

message UninterpretedOption.NamePart

descriptor.proto:655

The name of the uninterpreted option. Each string represents a segment in a dot-separated name. is_extension is true iff a segment represents an extension (denoted with parentheses in options specs in .proto files). E.g.,{ ["foo", false], ["bar.baz", true], ["qux", false] } represents "foo.(bar.baz).qux".

Used in: UninterpretedOption

message Value

struct.proto:63

`Value` represents a dynamically typed value which can be either null, a number, a string, a boolean, a recursive struct value, or a list of values. A producer of value is expected to set one of that variants, absence of any variant indicates an error. The JSON representation for `Value` is JSON value.

Used in: ListValue, Struct