package demo_plugin

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message ApiDef

api_def.proto:30

Used to specify and override the default API & behavior in the generated code for client languages, from what you would get from the OpDef alone. There will be a set of ApiDefs that are common to all client languages, and another set per client language. The per-client-language ApiDefs will inherit values from the common ApiDefs which it can either replace or modify. We separate the API definition from the OpDef so we can evolve the API while remaining backwards compatible when interpretting old graphs. Overrides go in an "api_def.pbtxt" file with a text-format ApiDefs message. WARNING: Be *very* careful changing the API for any existing op -- you can change the semantics of existing code. These changes may need to wait until a major release of TensorFlow to avoid breaking our compatibility promises.

Used in: ApiDefs

message ApiDef.Arg

api_def.proto:79

Used in: ApiDef

message ApiDef.Attr

api_def.proto:102

Description of the graph-construction-time configuration of this Op. That is to say, this describes the attr fields that will be specified in the NodeDef.

Used in: ApiDef

message ApiDef.Endpoint

api_def.proto:61

If you specify any endpoint, this will replace all of the inherited endpoints. The first endpoint should be the "canonical" endpoint, and should not be deprecated (unless all endpoints are deprecated).

Used in: ApiDef

enum ApiDef.Visibility

api_def.proto:42

Used in: ApiDef

message ApiDefs

api_def.proto:134

message AttrValue

attr_value.proto:18

Protocol buffer representing the value for an attr used to configure an Op. Comment indicates the corresponding attr type. Only the field matching the attr type may be filled.

Used in: ApiDef.Attr, FunctionDef, FunctionDef.ArgAttrs, NameAttrList, NodeDef, OpDef.AttrDef, OpInfo

message AttrValue.ListValue

attr_value.proto:20

LINT.IfChange

Used in: AttrValue

message CostGraphDef

cost_graph.proto:14

message CostGraphDef.AggregatedCost

cost_graph.proto:81

Total cost of this graph, typically used for balancing decisions.

Used in: CostGraphDef

message CostGraphDef.Node

cost_graph.proto:15

Used in: CostGraphDef

message CostGraphDef.Node.InputInfo

cost_graph.proto:29

Inputs of this node. They must be executed before this node can be executed. An input is a particular output of another node, specified by the node id and the output index.

Used in: Node

message CostGraphDef.Node.OutputInfo

cost_graph.proto:36

Outputs of this node.

Used in: Node

enum DataType

types.proto:12

(== suppress_warning documentation-presence ==) LINT.IfChange

Used in: AttrValue, AttrValue.ListValue, CostGraphDef.Node.OutputInfo, OpDef.ArgDef, OpInfo.TensorProperties, ResourceHandleProto.DtypeAndShape, TensorProto

message DeviceProperties

device_properties.proto:24

Used in: NamedDevice, OpInfo

message FunctionDef

function.proto:27

A function can be instantiated when the runtime can bind every attr with a value. When a GraphDef has a call to a function, it must have binding for every attr defined in the signature. TODO(zhifengc): * device spec, etc.

Used in: FunctionDefLibrary

message FunctionDef.ArgAttrs

function.proto:37

Attributes for function arguments. These attributes are the same set of valid attributes as to _Arg nodes.

Used in: FunctionDef

message FunctionDefLibrary

function.proto:16

A library is a set of named functions.

Used in: GraphDef

message GradientDef

function.proto:123

GradientDef defines the gradient function of a function defined in a function library. A gradient function g (specified by gradient_func) for a function f (specified by function_name) must follow the following: The function 'f' must be a numerical function which takes N inputs and produces M outputs. Its gradient function 'g', which is a function taking N + M inputs and produces N outputs. I.e. if we have (y1, y2, ..., y_M) = f(x1, x2, ..., x_N), then, g is (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N, dL/dy1, dL/dy2, ..., dL/dy_M), where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the loss function). dL/dx_i is the partial derivative of L with respect to x_i.

Used in: FunctionDefLibrary

message GraphDef

graph.proto:16

Represents the graph of operations

message LogNormalDistribution

op_performance_data.proto:64

Used in: OpPerformance

message NameAttrList

attr_value.proto:61

A list of attr names and their values. The whole list is attached with a string name. E.g., MatMul[T=float].

Used in: AttrValue, AttrValue.ListValue

message NamedDevice

device_properties.proto:55

message NodeDef

node_def.proto:13

Used in: FunctionDef, GraphDef

message NodeDef.ExperimentalDebugInfo

node_def.proto:66

Used in: NodeDef

message NormalDistribution

op_performance_data.proto:59

Used in: OpPerformance

message OpDef

op_def.proto:16

Defines an operation. A NodeDef in a GraphDef specifies an Op by using the "op" field which should match the name of a OpDef. LINT.IfChange

Used in: FunctionDef, OpList

message OpDef.ArgDef

op_def.proto:22

For describing inputs and outputs.

Used in: OpDef

message OpDef.AttrDef

op_def.proto:68

Description of the graph-construction-time configuration of this Op. That is to say, this describes the attr fields that will be specified in the NodeDef.

Used in: OpDef

message OpDeprecation

op_def.proto:163

Information about version-dependent deprecation of an op

Used in: OpDef

message OpInfo

op_performance_data.proto:34

Description of an operation as well as the parameters expected to impact its performance.

Used in: OpPerformance

message OpInfo.TensorProperties

op_performance_data.proto:42

Input data types, shapes and values if known.

Used in: OpInfo

message OpList

op_def.proto:172

A collection of OpDefs

message OpPerformance

op_performance_data.proto:70

Performance data for tensorflow operations

Used in: OpPerformanceList

message OpPerformance.OpMemory

op_performance_data.proto:106

Memory usage data for a tensorflow operation.

Used in: OpPerformance

message OpPerformanceList

op_performance_data.proto:121

A collection of OpPerformance data points.

message ResourceHandleProto

resource_handle.proto:17

Protocol buffer representing a handle to a tensorflow resource. Handles are not valid across executions, but can be serialized back and forth from within a single run.

Used in: TensorProto

message ResourceHandleProto.DtypeAndShape

resource_handle.proto:36

Protocol buffer representing a pair of (data type, tensor shape).

Used in: OpDef.ArgDef, ResourceHandleProto

message SessionInfo

op_performance_data.proto:28

Description of the session when an op is run.

Used in: OpInfo, OpPerformance

enum SpecializedType

types.proto:82

For identifying the underlying type of a variant. For variants, the types listed here are a subset of the types in the variant type registry, corresponding to commonly used variants which must occasionally be special-cased.

message TensorProto

tensor.proto:16

Protocol buffer representing a tensor.

Used in: AttrValue, AttrValue.ListValue, OpInfo.TensorProperties, VariantTensorDataProto

message TensorShapeProto

tensor_shape.proto:13

Dimensions of a tensor.

Used in: AttrValue, AttrValue.ListValue, CostGraphDef.Node.OutputInfo, OpInfo.TensorProperties, ResourceHandleProto.DtypeAndShape, TensorProto

message TensorShapeProto.Dim

tensor_shape.proto:15

One dimension of the tensor.

Used in: TensorShapeProto

message VariantTensorDataProto

tensor.proto:89

Protocol buffer representing the serialization format of DT_VARIANT tensors.

Used in: TensorProto

message VersionDef

versions.proto:24

Version information for a piece of serialized data There are different types of versions for each type of data (GraphDef, etc.), but they all have the same common shape described here. Each consumer has "consumer" and "min_producer" versions (specified elsewhere). A consumer is allowed to consume this data if producer >= min_producer consumer >= min_consumer consumer not in bad_consumers

Used in: GraphDef