package carls

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

service KnowledgeBankService

knowledge_bank_service.proto:142

KnowledgeBankService defines the service for handling embedding lookup, updates and samples.

message BytesFeature

input_context.proto:27

Used in: FeatureValue

message DynamicEmbeddingConfig

dynamic_embedding_config.proto:13

Configurations for a DynamicEmbedding. This is used to decide which storage system is used for storing embeddings and also the corresponding lookup/update/sampling strategy.

Used in: StartSessionRequest

message EmbeddingInitializer

initializer.proto:7

Used in: KnowledgeBankConfig

message EmbeddingInitializer.RandomNormalInitializer

initializer.proto:15

Used in: EmbeddingInitializer

message EmbeddingInitializer.RandomUniformInitializer

initializer.proto:10

Used in: EmbeddingInitializer

message EmbeddingInitializer.ZeroInitializer

initializer.proto:8

Used in: EmbeddingInitializer

(message has no fields)

message EmbeddingVectorProto

embedding.proto:9

Representation of an embedding vector and its related information.

Used in: EmbeddingInitializer, InProtoKnowledgeBankConfig.EmbeddingData, LookupResponse, MemoryLookupRequest, UpdateRequest, candidate_sampling.NegativeSamplingResult, candidate_sampling.SampleContext, candidate_sampling.TopkSamplingResult, memory_store.GaussianCluster, memory_store.GaussianMemoryCheckpointMetaData.ClusterData

message FeatureValue

input_context.proto:18

Used in: InputFeature

message FloatFeature

input_context.proto:35

Used in: FeatureValue

message GradientDescentConfig

gradient_descent_config.proto:10

Config for gradient descent algorithms used in knowledge bank service. Each time the server receives the gradients of the embedding data, it applies the corresponding optimizer to update the embedding data. Gradient update is conducted on the server side to facilitate asynchronous update.

Used in: DynamicEmbeddingConfig

message GradientDescentConfig.AdaGrad

gradient_descent_config.proto:15

Used in: GradientDescentConfig

message GradientDescentConfig.SGD

gradient_descent_config.proto:14

Used in: GradientDescentConfig

(message has no fields)

message InProtoKnowledgeBankConfig

knowledge_bank_config.proto:20

Stores the embedding in the proto directly. Note that protocol buffer only allows a small number of entries so only use this for model testing.

message InProtoKnowledgeBankConfig.EmbeddingData

knowledge_bank_config.proto:22

Represent the embedding data as a map from string to EmbeddingVectorProto.

Used in: InProtoKnowledgeBankConfig

message InputContext

input_context.proto:6

An InputContext is a list of features that provides the context of an input.

Used in: EmbeddingVectorProto, SparseFeatureEmbeddingMetaData

message InputFeature

input_context.proto:14

A generic sparse/dense feature representation. Each feature must have a unique value list, be it string, float or int. To include addition information for debugging, one can use debug_info.

Used in: InputContext

message Int64Feature

input_context.proto:43

Used in: FeatureValue

message KnowledgeBankCheckpointMetaData

knowledge_bank_config.proto:45

MetaData for restoring the state of a KnowledgeBank.

message KnowledgeBankConfig

knowledge_bank_config.proto:10

Used in: DynamicEmbeddingConfig, KnowledgeBankCheckpointMetaData

message LeveldbKnowledgeBankConfig

knowledge_bank_config.proto:32

Stores the embedding in the LevelDB which facilitates efficient key-value lookup and update. The KnowledgeBankServer first loads all the embedding data from the DB into memory then only updates the data in the DB when Export() is called.

enum MemoryLookupRequest.LookupMode

knowledge_bank_service.proto:88

Used in: MemoryLookupRequest

message PhraseEmbeddingLookup

sparse_features_config.proto:8

Config for constructing a phrase EmbeddingLookup used for sentence embedding.

Used in: SparseFeatureEmbeddingConfig

message PhraseEmbeddingLookup.LevelDbConfig

sparse_features_config.proto:16

Config for the embedding data that is stored in the LevelDB.

Used in: PhraseEmbeddingLookup

message PhraseEmbeddingLookup.TFRecordConfig

sparse_features_config.proto:11

Config for the embedding data that are stored in a TFRecord file, The key of each embedding is stored in the EmbeddingVectorProto.tag field.

Used in: PhraseEmbeddingLookup

message SampleResponse.Samples

knowledge_bank_service.proto:72

Used in: SampleResponse

message SparseFeatureEmbeddingConfig

sparse_features_config.proto:76

A sparse features embedding consists of a phrase embedding lookup and meta_data for composition.

message SparseFeatureEmbeddingMetaData

sparse_features_config.proto:27

Information used during serving of sentence embedding. It should be paired with a PhraseEmbeddingLookup in serving.

Used in: SparseFeatureEmbeddingConfig

enum SparseFeatureEmbeddingMetaData.CombineMethod

sparse_features_config.proto:37

Combine method for computing the embedding of a sentence or a phrase.

Used in: SparseFeatureEmbeddingMetaData

message TestBaseProto2Def

test_proto2.proto:5

message TestBaseProto3Def

test_proto3.proto:7

message TestExtendedProto2Def

test_proto2.proto:10

(message has no fields)

message TestExtendedProto3Def

test_proto3.proto:11

message Uint64Feature

input_context.proto:51

Used in: FeatureValue