package waymo.open_dataset

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message BoundarySegment

map.proto:95

A segment of a lane with a given adjacent boundary.

Used in: LaneCenter, LaneNeighbor

message Box2d

box.proto:21

message Box3d

box.proto:32

Used in: keypoints.PoseEstimation

message Breakdown

breakdown.proto:25

A breakdown generator defines a way to shard a set of objects such that users can compute metrics for different subsets of objects. Each breakdown generator comes with a unique breakdown generator ID.

Used in: DetectionMeasurements, DetectionMetrics, TrackingMeasurements, TrackingMetrics

enum Breakdown.GeneratorId

breakdown.proto:26

Used in: Breakdown, Config

message CameraCalibration

dataset.proto:96

Used in: Context

enum CameraCalibration.RollingShutterReadOutDirection

dataset.proto:114

Used in: CameraCalibration

message CameraImage

dataset.proto:315

All timestamps in this proto are represented as seconds since Unix epoch.

Used in: Frame

message CameraLabels

dataset.proto:370

The camera labels associated with a given camera image. This message indicates the ground truth information for the camera image recorded by the given camera. If there are no labeled objects in the image, then the labels field is empty.

Used in: Frame

message CameraName

dataset.proto:50

(message has no fields)

enum CameraName.Name

dataset.proto:51

Used in: CameraCalibration, CameraImage, CameraLabels, CameraSegmentationFrame, CameraTokens, Object

message CameraSegmentation

camera_segmentation.proto:21

Semantic classes for the camera segmentation labels.

(message has no fields)

enum CameraSegmentation.Type

camera_segmentation.proto:22

message CameraSegmentationFrame

camera_segmentation_metrics.proto:19

Used in: CameraSegmentationFrameList

message CameraSegmentationFrameList

camera_segmentation_metrics.proto:33

Used in: CameraSegmentationSubmission

message CameraSegmentationLabel

dataset.proto:274

Panoptic (instance + semantic) segmentation labels for a given camera image. Associations can also be provided between each instance ID and a globally unique ID across all frames.

Used in: CameraImage, CameraSegmentationFrame

message CameraSegmentationLabel.InstanceIDToGlobalIDMapping

dataset.proto:295

A mapping between each panoptic label with an instance_id and a globally unique ID across all frames within the same sequence. This can be used to match instances across cameras and over time. i.e. instances belonging to the same object will map to the same global ID across all frames in the same sequence. NOTE: These unique IDs are not consistent with other IDs in the dataset, e.g. the bounding box IDs.

Used in: CameraSegmentationLabel

message CameraSegmentationMetrics

camera_segmentation_metrics.proto:37

message CameraSegmentationSubmission

camera_segmentation_submission.proto:23

Next ID: 10.

message CameraTokens

camera_tokens.proto:25

Camera tokens for a single camera sensor.

Used in: FrameCameraTokens

message ChallengeScenarioPredictions

motion_submission.proto:102

A set of predictions for a single scenario.

Used in: MotionChallengeSubmission

message CompressedFrameLaserData

compressed_lidar.proto:92

Lidar data of a frame.

Used in: Scenario

message CompressedLaser

compressed_lidar.proto:85

Compressed Laser data.

Used in: CompressedFrameLaserData

message CompressedRangeImage

compressed_lidar.proto:33

Range image is a 2d tensor. The first dimension (rows) represents pitch. The second dimension represents yaw (columns). Zlib compressed range images include: Raw range image: Raw range image with a non-empty 'range_image_pose_delta_compressed' which tells the vehicle pose of each range image cell. NOTE: 'range_image_pose_delta_compressed' is only populated for the first range image return. The second return has the exact the same range image pose as the first one.

Used in: CompressedLaser

message Config

metrics.proto:85

Configuration to compute detection/tracking metrics.

message Config.LongitudinalErrorTolerantConfig

metrics.proto:119

Longitudinal error tolerant (LET) metrics config for Camera-Only (Mono) 3D Detection. By enabling this metric, the prediction-groundtruth matching will be more tolerant to the longitudinal noise, rather than just use IoU. The tolerance is larger in the long range, but only along the line of sight from the sensor origin.

Used in: Config

enum Config.LongitudinalErrorTolerantConfig.AlignType

metrics.proto:152

Describes how a prediction box aligns with a ground truth box to minimize the longitudinal error.

Used in: LongitudinalErrorTolerantConfig

message Config.LongitudinalErrorTolerantConfig.Location3D

metrics.proto:125

Location in 3D space described in a Cartersian coordinate system.

Used in: LongitudinalErrorTolerantConfig

message Context

dataset.proto:142

Used in: Frame

message Context.Stats

dataset.proto:148

Some stats for the run segment used.

Used in: Context

message Context.Stats.ObjectCount

dataset.proto:149

Used in: Stats

message Crosswalk

map.proto:236

Used in: MapFeature

message DeltaEncodedData

compressed_lidar.proto:78

Delta Encoded data structure. The protobuf compressed mask and residual data and the compressed data is encoded via zlib: compressed_bytes = zlib.compress( metadata + data_bytes + mask_bytes + residuals_bytes) The range_image_delta_compressed and range_image_pose_delta_compressed in the CompressedRangeImage are both encoded using this method.

message DetectionMeasurement

metrics.proto:202

Used in: DetectionMeasurements

message DetectionMeasurement.Details

metrics.proto:204

Detailed information regarding the results.

Used in: DetectionMeasurement

message DetectionMeasurements

metrics.proto:242

Used in: DetectionMetrics

message DetectionMetrics

metrics.proto:248

message Difficulty

metrics.proto:79

A set of difficulty levels.

Used in: Config

message Driveway

map.proto:250

Used in: MapFeature

message DynamicMapState

scenario.proto:77

The dynamic map information at a single time step.

Used in: Scenario

message DynamicState

map.proto:31

Used in: Map

message E2EDChallengeSubmission

end_to_end_driving_submission.proto:47

Message packaging a full submission to the challenge.

enum E2EDChallengeSubmission.SubmissionType

end_to_end_driving_submission.proto:53

The challenge submission type.

Used in: E2EDChallengeSubmission

message E2EDFrame

end_to_end_driving_data.proto:25

This proto contains the Waymo Open Dataset End-to-End Driving (E2ED) data format.

message E2EDMetrics

end_to_end_driving_metrics.proto:23

message EgoIntent

end_to_end_driving_data.proto:82

(message has no fields)

enum EgoIntent.Intent

end_to_end_driving_data.proto:84

Driving intent of the ego-vehicle at a given timestep.

Used in: E2EDFrame

message EgoTrajectoryStates

end_to_end_driving_data.proto:61

Used in: E2EDFrame

message Frame

dataset.proto:381

Used in: E2EDFrame

message FrameCameraTokens

camera_tokens.proto:33

Camera tokens for all sensors of a frame.

Used in: Scenario

message FrameTrajectoryPredictions

end_to_end_driving_submission.proto:36

Used in: E2EDChallengeSubmission

message JointPrediction

motion_submission.proto:93

Used in: ChallengeScenarioPredictions

message JointScene

sim_agents_submission.proto:62

Used in: ScenarioRollouts

message JointTrajectories

motion_metrics.proto:37

A message containing a prediction for either a single object or a joint prediction for a set of objects.

Used in: MultimodalPrediction

message Label

label.proto:22

Used in: CameraLabels, Frame, Object

message Label.Association

label.proto:99

Information to cross reference between labels for different modalities.

Used in: Label

message Label.Box

label.proto:24

Upright box, zero pitch and roll.

Used in: Label

enum Label.Box.Type

label.proto:40

Used in: Config

enum Label.DifficultyLevel

label.proto:75

The difficulty level of this label. The higher the level, the harder it is.

Used in: Breakdown, Difficulty, Label

message Label.Metadata

label.proto:53

Used in: Label

enum Label.Type

label.proto:63

Used in: Context.Stats.ObjectCount, Label, Submission

message LaneCenter

map.proto:142

Used in: MapFeature

enum LaneCenter.LaneType

map.proto:147

Type of this lane.

Used in: LaneCenter

message LaneNeighbor

map.proto:111

Used in: LaneCenter

message Laser

dataset.proto:375

Used in: Frame, SegmentationFrame

message LaserCalibration

dataset.proto:127

Used in: CompressedFrameLaserData, Context

message LaserName

dataset.proto:66

'Laser' is used interchangeably with 'Lidar' in this file.

(message has no fields)

enum LaserName.Name

dataset.proto:67

Used in: CompressedLaser, Laser, LaserCalibration

message Map

map.proto:20

message MapFeature

map.proto:71

Used in: Frame, Map, Scenario

message MapPoint

map.proto:87

Used in: Crosswalk, Driveway, LaneCenter, RoadEdge, RoadLine, SpeedBump, StopSign, TrafficSignalLaneState

message MatcherProto

metrics.proto:63

Different types of matchers can be supported. Each matcher has a unique ID.

(message has no fields)

enum MatcherProto.Type

metrics.proto:64

Used in: Config

message MatrixFloat

dataset.proto:38

Row-major matrix. Requires: data.size() = product(shape.dims()).

Used in: RangeImage

message MatrixInt32

dataset.proto:45

Row-major matrix. Requires: data.size() = product(shape.dims()).

message MatrixShape

dataset.proto:24

Used in: MatrixFloat, MatrixInt32

message Metadata

compressed_lidar.proto:65

Metadata used for delta encoder.

Used in: DeltaEncodedData

message MotionChallengeSubmission

motion_submission.proto:125

A set of ScenarioPredictions protos. A ScenarioPredictions proto for each example in the test or validation set must be included for a valid submission.

enum MotionChallengeSubmission.SubmissionType

motion_submission.proto:126

Used in: MotionChallengeSubmission

message MotionExampleConversionConfig

conversion_config.proto:24

A configuration for converting Scenario protos to tf.Example protos.

message MotionMetrics

motion_metrics.proto:128

message MotionMetricsBundle

motion_metrics.proto:69

Used in: MotionMetrics

message MotionMetricsConfig

motion_metrics.proto:134

Configuration to compute motion metrics.

message MotionMetricsConfig.MeasurementStepConfig

motion_metrics.proto:135

Used in: MotionMetricsConfig

message MultimodalPrediction

motion_metrics.proto:48

Used in: ScenarioPredictions

message NoLabelZoneObject

metrics.proto:49

Used in: Objects

message Object

metrics.proto:24

This is a wrapper on waymo.open_dataset.Label. We have another proto to add more information such as class confidence for metrics computation.

Used in: Objects

message ObjectState

scenario.proto:28

Used in: Track

message ObjectTrajectory

motion_submission.proto:66

Used in: ScoredJointTrajectory

message Objects

metrics.proto:55

Used in: Submission

message OccupancyFlowMetrics

occupancy_flow_metrics.proto:90

Occupancy and flow metrics averaged over all prediction waypoints. Please refer to occupancy_flow_metrics.py for an implementation of these metrics.

message OccupancyFlowTaskConfig

occupancy_flow_metrics.proto:25

Configuration for all parameters defining the occupancy flow task.

message Polygon2dProto

label.proto:139

Non-self-intersecting 2d polygons. This polygon is not necessarily convex.

Used in: Frame, NoLabelZoneObject

message PredictionSet

motion_submission.proto:59

Used in: ChallengeScenarioPredictions

message RangeImage

dataset.proto:179

Range image is a 2d tensor. The first dim (row) represents pitch. The second dim represents yaw. There are two types of range images: 1. Raw range image: Raw range image with a non-empty 'range_image_pose_compressed' which tells the vehicle pose of each range image cell. 2. Virtual range image: Range image with an empty 'range_image_pose_compressed'. This range image is constructed by transforming all lidar points into a fixed vehicle frame (usually the vehicle frame of the middle scan). NOTE: 'range_image_pose_compressed' is only populated for the first range image return. The second return has the exact the same range image pose as the first one.

Used in: Laser

message RequiredPrediction

scenario.proto:83

An object that must be predicted for the scenario.

Used in: Scenario

enum RequiredPrediction.DifficultyLevel

scenario.proto:85

A difficulty level for predicting a given track.

Used in: RequiredPrediction

message RoadEdge

map.proto:186

Used in: MapFeature

enum RoadEdge.RoadEdgeType

map.proto:188

Type of this road edge.

Used in: RoadEdge

message RoadLine

map.proto:206

Used in: MapFeature

enum RoadLine.RoadLineType

map.proto:208

Type of this road line.

Used in: BoundarySegment, RoadLine

message Scenario

scenario.proto:98

message ScenarioPredictions

motion_metrics.proto:58

A set of predictions used for metrics evaluation.

message ScenarioRollouts

sim_agents_submission.proto:70

Used in: SimAgentsChallengeSubmission

message ScoredJointTrajectory

motion_submission.proto:80

A message containing a prediction for either a single object or a joint prediction for a set of objects.

Used in: JointPrediction

message ScoredTrajectory

motion_submission.proto:36

Used in: SingleObjectPrediction

message Segmentation

segmentation.proto:20

(message has no fields)

enum Segmentation.Type

segmentation.proto:21

Used in: SegmentationMetricsConfig

message SegmentationFrame

segmentation_metrics.proto:20

Used in: SegmentationFrameList

message SegmentationFrameList

segmentation_metrics.proto:31

Used in: SemanticSegmentationSubmission

message SegmentationMeasurements

segmentation_metrics.proto:40

Used in: SegmentationMetrics

message SegmentationMetrics

segmentation_metrics.proto:50

message SegmentationMetricsConfig

segmentation_metrics.proto:35

message SemanticSegmentationSubmission

segmentation_submission.proto:25

If your inference results are too large to fit in one proto, you can shard them to multiple files by sharding the inference_results field. Next ID: 11.

enum SemanticSegmentationSubmission.SensorType

segmentation_submission.proto:26

Used in: SemanticSegmentationSubmission

message SimAgentMetrics

sim_agents_metrics.proto:113

Aggregation (at the dataset-level or scenario-level) of the lower-level features into proper metrics.

message SimAgentMetricsConfig

sim_agents_metrics.proto:22

Configuration for the Sim Agents metrics.

message SimAgentMetricsConfig.BernoulliEstimate

sim_agents_metrics.proto:88

The Bernoulli estimator is used for boolean features, e.g. collision.

Used in: FeatureConfig

message SimAgentMetricsConfig.FeatureConfig

sim_agents_metrics.proto:25

Each of the features used to evaluated sim-agents has one of the following configs.

Used in: SimAgentMetricsConfig

message SimAgentMetricsConfig.HistogramEstimate

sim_agents_metrics.proto:64

Configuration for the histogram-based likelihood estimation.

Used in: FeatureConfig

message SimAgentMetricsConfig.KernelDensityEstimate

sim_agents_metrics.proto:78

Used in: FeatureConfig

message SimAgentsBucketedMetrics

sim_agents_metrics.proto:159

Bucketed version of the sim agent metrics. This aggregated message is used in the challenge leaderboard to provide an easy to read but still informative metric output format. All the bucketed metrics are rescaled to be in the range [0, 1], but still according to the meta-metric weights defined in the metrics config.

message SimAgentsChallengeSubmission

sim_agents_submission.proto:80

Message packaging a full submission to the challenge.

enum SimAgentsChallengeSubmission.SubmissionType

sim_agents_submission.proto:86

The challenge submission type.

Used in: SimAgentsChallengeSubmission

message SimulatedTrajectory

sim_agents_submission.proto:25

Used in: JointScene

message SingleObjectPrediction

motion_submission.proto:46

Used in: PredictionSet

message SingleTrajectory

motion_metrics.proto:24

Used in: JointTrajectories

message SpeedBump

map.proto:243

Used in: MapFeature

message StopSign

map.proto:228

Used in: MapFeature

message Submission

submission.proto:26

If your inference results are too large to fit in one proto, you can shard them to multiple files by sharding the inference_results field. Next ID: 17.

enum Submission.SensorType

submission.proto:38

Used in: Submission

enum Submission.Task

submission.proto:28

These values correspond to the tasks on the waymo.com/open site.

Used in: Submission

message Track

scenario.proto:55

The object states for a single object through the scenario.

Used in: Scenario

enum Track.ObjectType

scenario.proto:56

Used in: MotionMetricsBundle, SimulatedTrajectory, Track

message TrackingMeasurement

metrics.proto:269

Used in: TrackingMeasurements

message TrackingMeasurement.Details

metrics.proto:286

Used in: TrackingMeasurement

message TrackingMeasurements

metrics.proto:303

Used in: TrackingMetrics

message TrackingMetrics

metrics.proto:309

message TrafficSignalLaneState

map.proto:39

Used in: DynamicMapState, DynamicState

enum TrafficSignalLaneState.State

map.proto:44

Used in: TrafficSignalLaneState

message Trajectory

motion_submission.proto:23

Used in: ObjectTrajectory, ScoredTrajectory

message TrajectoryPrediction

end_to_end_driving_submission.proto:25

Used in: FrameTrajectoryPredictions

message Transform

dataset.proto:80

4x4 row major transform matrix that tranforms 3d points from one frame to another.

Used in: CameraCalibration, CameraImage, CompressedFrameLaserData, Frame, LaserCalibration

message Vector2d

vector.proto:19

Used in: Box2d, keypoints.Keypoint2d

message Vector3d

vector.proto:24

Used in: Box3d, Frame, keypoints.Keypoint3d

message Velocity

dataset.proto:84

Used in: CameraImage