package tensorflow

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message AttrValue

attr_value.proto:16

Protocol buffer representing the value for an attr used to configure an Op. Comment indicates the corresponding attr type. Only the field matching the attr type may be filled.

Used in: FunctionDef, NameAttrList, NodeDef, OpDef.AttrDef

message AttrValue.ListValue

attr_value.proto:18

LINT.IfChange

Used in: AttrValue

enum DataType

types.proto:11

LINT.IfChange

Used in: AttrValue, AttrValue.ListValue, OpDef.ArgDef, TensorProto

message FunctionDef

function.proto:25

A function can be instantiated when the runtime can bind every attr with a value. When a GraphDef has a call to a function, it must have binding for every attr defined in the signature. TODO(zhifengc): * device spec, etc.

Used in: FunctionDefLibrary

message FunctionDefLibrary

function.proto:14

A library is a set of named functions.

Used in: GraphDef

message GradientDef

function.proto:99

GradientDef defines the gradient function of a function defined in a function library. A gradient function g (specified by gradient_func) for a function f (specified by function_name) must follow the following: The function 'f' must be a numerical function which takes N inputs and produces M outputs. Its gradient function 'g', which is a function taking N + M inputs and produces N outputs. I.e. if we have (y1, y2, ..., y_M) = f(x1, x2, ..., x_N), then, g is (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N, dL/dy1, dL/dy2, ..., dL/dy_M), where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the loss function). dL/dx_i is the partial derivative of L with respect to x_i.

Used in: FunctionDefLibrary

message GraphDef

graph.proto:14

Represents the graph of operations

message NameAttrList

attr_value.proto:59

A list of attr names and their values. The whole list is attached with a string name. E.g., MatMul[T=float].

Used in: AttrValue, AttrValue.ListValue

message NodeDef

node_def.proto:11

Used in: FunctionDef, GraphDef

message OpDef

op_def.proto:15

Defines an operation. A NodeDef in a GraphDef specifies an Op by using the "op" field which should match the name of a OpDef. LINT.IfChange

Used in: FunctionDef, OpList

message OpDef.ArgDef

op_def.proto:21

For describing inputs and outputs.

Used in: OpDef

message OpDef.AttrDef

op_def.proto:60

Description of the graph-construction-time configuration of this Op. That is to say, this describes the attr fields that will be specified in the NodeDef.

Used in: OpDef

message OpDeprecation

op_def.proto:155

Information about version-dependent deprecation of an op

Used in: OpDef

message OpList

op_def.proto:164

A collection of OpDefs

message ResourceHandleProto

resource_handle.proto:13

Protocol buffer representing a handle to a tensorflow resource. Handles are not valid across executions, but can be serialized back and forth from within a single run.

Used in: TensorProto

message TensorProto

tensor.proto:14

Protocol buffer representing a tensor.

Used in: AttrValue, AttrValue.ListValue, VariantTensorDataProto

message TensorShapeProto

tensor_shape.proto:13

Dimensions of a tensor.

Used in: AttrValue, AttrValue.ListValue, TensorProto

message TensorShapeProto.Dim

tensor_shape.proto:15

One dimension of the tensor.

Used in: TensorShapeProto

message VariantTensorDataProto

tensor.proto:87

Protocol buffer representing the serialization format of DT_VARIANT tensors.

Used in: TensorProto

message VersionDef

versions.proto:23

Version information for a piece of serialized data There are different types of versions for each type of data (GraphDef, etc.), but they all have the same common shape described here. Each consumer has "consumer" and "min_producer" versions (specified elsewhere). A consumer is allowed to consume this data if producer >= min_producer consumer >= min_consumer consumer not in bad_consumers

Used in: GraphDef