SSD is an unified framework for object detection with a single network.
You can use the code to train/evaluate/test for object detection task.
This is a re-implementation of original SSD which is based on caffe. The official repository is available here. The arXiv paper is available here.
This example is intended for reproducing the nice detector while fully utilize the remarkable traits of MXNet.
pip install mxnet
will work for this repo as well in most cases.mxnet/src/operator/contrib
, symbols are modified. Please use Release-v0.2-beta for old models.
Model | Training data | Test data | mAP | Note |
---|---|---|---|---|
VGG16_reduced 300x300 | VOC07+12 trainval | VOC07 test | 77.8 | fast |
VGG16_reduced 512x512 | VOC07+12 trainval | VOC07 test | 79.9 | slow |
Inception-v3 512x512 | VOC07+12 trainval | VOC07 test | 78.9 | fastest |
Resnet-50 512x512 | VOC07+12 trainval | VOC07 test | 79.1 | fast |
MobileNet 512x512 | VOC07+12 trainval | VOC07 test | 72.5 | super fast |
MobileNet 608x608 | VOC07+12 trainval | VOC07 test | 74.7 | super fast |
More to be added
Model | GPU | CUDNN | Batch-size | FPS* |
---|---|---|---|---|
VGG16_reduced 300x300 | TITAN X(Maxwell) | v5.1 | 16 | 95 |
VGG16_reduced 300x300 | TITAN X(Maxwell) | v5.1 | 8 | 95 |
VGG16_reduced 300x300 | TITAN X(Maxwell) | v5.1 | 1 | 64 |
VGG16_reduced 300x300 | TITAN X(Maxwell) | N/A | 8 | 36 |
VGG16_reduced 300x300 | TITAN X(Maxwell) | N/A | 1 | 28 |
Forward time only, data loading and drawing excluded.
docker pull daviddocker78/mxnet-ssd:gpu_0.12.0_cuda9
cv2
, matplotlib
and numpy
. If you use mxnet-python api, you probably have already got them. You can install them via pip or package manegers, such as apt-get
:sudo apt-get install python-opencv python-matplotlib python-numpy
# if you don't have git, install it via apt or homebrew/yum based on your system
sudo apt-get install git
# cd where you would like to clone this repo
cd ~
git clone --recursive https://github.com/zhreshold/mxnet-ssd.git
# make sure you clone this with --recursive
# if not done correctly or you are using downloaded repo, pull them all via:
# git submodule update --recursive --init
cd mxnet-ssd/mxnet
cd /path/to/mxnet-ssd/mxnet
. Follow the official instructions here.# for Ubuntu/Debian
cp make/config.mk ./config.mk
# modify it if necessary
Remember to enable CUDA if you want to be able to train, since CPU training is insanely slow. Using CUDNN is optional, but highly recommanded.
ssd_resnet50_0712.zip
, and extract to model/
directory.# cd /path/to/mxnet-ssd
python demo.py --gpu 0
# play with examples:
python demo.py --epoch 0 --images ./data/demo/dog.jpg --thresh 0.5
python demo.py --cpu --network resnet50 --data-shape 512
# wait for library to load for the first time
python demo.py --help
for more options.This example only covers training on Pascal VOC dataset. Other datasets should be easily supported by adding subclass derived from class Imdb
in dataset/imdb.py
. See example of dataset/pascal_voc.py
for details.
vgg16_reduced
model here, unzip .param
and .json
files into model/
directory by default.cd /path/to/where_you_store_datasets/
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
# Extract the data.
tar -xvf VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_06-Nov-2007.tar
tar -xvf VOCtest_06-Nov-2007.tar
trainval
set in VOC2007/2012 as a common strategy. The suggested directory structure is to store VOC2007
and VOC2012
directories in the same VOCdevkit
folder.VOCdevkit
folder to data/VOCdevkit
by default:ln -s /path/to/VOCdevkit /path/to/this_example/data/VOCdevkit
Use hard link instead of copy could save us a bit disk space.
# cd /path/to/mxnet-ssd
bash tools/prepare_pascal.sh
# or if you are using windows
python tools/prepare_dataset.py --dataset pascal --year 2007,2012 --set trainval --target ./data/train.lst
python tools/prepare_dataset.py --dataset pascal --year 2007 --set test --target ./data/val.lst --shuffle False
python train.py
batch-size=32
and learning_rate=0.004
. You might need to change the parameters a bit if you have different configurations. Check python train.py --help
for more training options. For example, if you have 4 GPUs, use:# note that a perfect training parameter set is yet to be discovered for multi-gpu
python train.py --gpus 0,1,2,3 --batch-size 128 --lr 0.001
VGG16_reduced
model with batch-size
32 takes around 4684MB without CUDNN(conv1_x and conv2_x fixed).Use:
# cd /path/to/mxnet-ssd
python evaluate.py --gpus 0,1 --batch-size 128 --epoch 0
This simply removes all loss layers, and attach a layer for merging results and non-maximum suppression. Useful when loading python symbol is not available.
# cd /path/to/mxnet-ssd
python deploy.py --num-class 20
# then you can run demo with new model without loading python symbol
python demo.py --prefix model/ssd_300_deploy --epoch 0 --deploy
Converter from caffe is available at /path/to/mxnet-ssd/tools/caffe_converter
This is specifically modified to handle custom layer in caffe-ssd. Usage:
cd /path/to/mxnet-ssd/tools/caffe_converter
make
python convert_model.py deploy.prototxt name_of_pretrained_caffe_model.caffemodel ssd_converted
# you will use this model in deploy mode without loading from python symbol
python demo.py --prefix ssd_converted --epoch 1 --deploy
There is no guarantee that conversion will always work, but at least it's good for now.
Since the new interface for composing network is introduced, the old models have inconsistent names for weights. You can still load the previous model by rename the symbol to legacy_xxx.py
and call with python train/demo.py --network legacy_xxx
For example:
python demo.py --network 'legacy_vgg16_ssd_300.py' --prefix model/ssd_300 --epoch 0
First make sure docker is installed. The docker plugin nvidia-docker is required to run on Nvidia GPUs.
docker pull daviddocker78/mxnet-ssd:gpu_0.12.0_cuda9
Otherwise, if you wish to build it yourself, you have the Dockerfiles available in this repo, under the 'docker' folder.
nvidia-docker run -it --rm myImageName:tag
now you can execute commands the same way as you would, if you'd install mxnet on your own computer. for more information, see the Guide.
python train.py --gpus 0,1,2,3 --batch-size 128 --lr 0.001 --tensorboard True
python train.py --gpus 0,1,2,3 --batch-size 128 --lr 0.001 --tensorboard True --monitor 40
# download the built image from Dockerhub
docker pull tensorflow/tensorflow:1.4.0-devel-gpu
# run a container and open a port using '-p' flag.
# attach a volume from where you stored your logs, to a directory inside the container
nvidia-docker run -it --rm -p 0.0.0.0:6006:6006 -v /my/full/experiment/path:/res tensorflow/tensorflow:1.4.0-devel-gpu
cd /res
tensorboard --logdir=.
To launch tensorboard without docker, simply run the last command Now tensorboard is loading the tensorEvents of your experiment. open your browser under '0.0.0.0:6006' and you will have tensorboard!