package tensorflow.boosted_trees.learner

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message AveragingConfig

learner.proto:61

When we have a sequence of trees 1, 2, 3 ... n, these essentially represent weights updates in functional space, and thus we can use averaging of weight updates to achieve better performance. For example, we can say that our final ensemble will be an average of ensembles of tree 1, and ensemble of tree 1 and tree 2 etc .. ensemble of all trees. Note that this averaging will apply ONLY DURING PREDICTION. The training stays the same.

Used in: LearnerConfig

message LearnerConfig

learner.proto:91

enum LearnerConfig.GrowingMode

learner.proto:98

Used in: LearnerConfig

enum LearnerConfig.MultiClassStrategy

learner.proto:104

Used in: LearnerConfig

enum LearnerConfig.PruningMode

learner.proto:92

Used in: LearnerConfig

message LearningRateConfig

learner.proto:32

LearningRateConfig describes all supported learning rate tuners.

Used in: LearnerConfig

message LearningRateDropoutDrivenConfig

learner.proto:71

Used in: LearningRateConfig

message LearningRateFixedConfig

learner.proto:41

Config for a fixed learning rate.

Used in: LearningRateConfig

message LearningRateLineSearchConfig

learner.proto:46

Config for a tuned learning rate.

Used in: LearningRateConfig

message SplitInfo

split_info.proto:10

Gathered information for a split node.

message TreeConstraintsConfig

learner.proto:19

Tree constraints config.

Used in: LearnerConfig

message TreeRegularizationConfig

learner.proto:8

Tree regularization config.

Used in: LearnerConfig