package google.cloud.bigquery.v2

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

service ModelService

model.proto:34

message EncryptionConfiguration

encryption_config.proto:28

Used in: Model

message Model

model.proto:64

Used as response type in: ModelService.GetModel, ModelService.PatchModel

Used as field type in: ListModelsResponse, PatchModelRequest

message Model.AggregateClassificationMetrics

model.proto:107

Aggregate metrics for classification/classifier models. For multi-class models, the metrics are either macro-averaged or micro-averaged. When macro-averaged, the metrics are calculated for each label and then an unweighted average is taken of those values. When micro-averaged, the metric is calculated globally by counting the total number of correctly predicted rows.

Used in: BinaryClassificationMetrics, MultiClassClassificationMetrics

message Model.BinaryClassificationMetrics

model.proto:140

Evaluation metrics for binary classification/classifier models.

Used in: EvaluationMetrics

message Model.BinaryClassificationMetrics.BinaryConfusionMatrix

model.proto:142

Confusion matrix for binary classification models.

Used in: BinaryClassificationMetrics

message Model.ClusteringMetrics

model.proto:226

Evaluation metrics for clustering models.

Used in: EvaluationMetrics

message Model.ClusteringMetrics.Cluster

model.proto:228

Message containing the information about one cluster.

Used in: ClusteringMetrics

message Model.ClusteringMetrics.Cluster.FeatureValue

model.proto:230

Representative value of a single feature within the cluster.

Used in: Cluster

message Model.ClusteringMetrics.Cluster.FeatureValue.CategoricalValue

model.proto:232

Representative value of a categorical feature.

Used in: FeatureValue

message Model.ClusteringMetrics.Cluster.FeatureValue.CategoricalValue.CategoryCount

model.proto:234

Represents the count of a single category within the cluster.

Used in: CategoricalValue

enum Model.DataSplitMethod

model.proto:480

Indicates the method to split input data into multiple tables.

Used in: TrainingRun.TrainingOptions

enum Model.DistanceType

model.proto:469

Distance metric used to compute the distance between two points.

Used in: TrainingRun.TrainingOptions

message Model.EvaluationMetrics

model.proto:286

Evaluation metrics of a model. These are either computed on all training data or just the eval data based on whether eval data was used during training. These are not present for imported models.

Used in: TrainingRun

message Model.KmeansEnums

model.proto:65

(message has no fields)

enum Model.KmeansEnums.KmeansInitializationMethod

model.proto:68

Indicates the method used to initialize the centroids for KMeans clustering algorithm.

Used in: TrainingRun.TrainingOptions

enum Model.LearnRateStrategy

model.proto:501

Indicates the learning rate optimization strategy to use.

Used in: TrainingRun.TrainingOptions

enum Model.LossType

model.proto:458

Loss metric to evaluate model training performance.

Used in: TrainingRun.TrainingOptions

enum Model.ModelType

model.proto:441

Indicates the type of the Model.

Used in: Model

message Model.MultiClassClassificationMetrics

model.proto:187

Evaluation metrics for multi-class classification/classifier models.

Used in: EvaluationMetrics

message Model.MultiClassClassificationMetrics.ConfusionMatrix

model.proto:189

Confusion matrix for multi-class classification models.

Used in: MultiClassClassificationMetrics

message Model.MultiClassClassificationMetrics.ConfusionMatrix.Entry

model.proto:191

A single entry in the confusion matrix.

Used in: Row

message Model.MultiClassClassificationMetrics.ConfusionMatrix.Row

model.proto:202

A single row in the confusion matrix.

Used in: ConfusionMatrix

enum Model.OptimizationStrategy

model.proto:512

Indicates the optimization strategy used for training.

Used in: TrainingRun.TrainingOptions

message Model.RegressionMetrics

model.proto:84

Evaluation metrics for regression and explicit feedback type matrix factorization models.

Used in: EvaluationMetrics

message Model.TrainingRun

model.proto:304

Information about a single training query run for the model.

Used in: Model

message Model.TrainingRun.IterationResult

model.proto:392

Information about a single iteration of the training run.

Used in: TrainingRun

message Model.TrainingRun.IterationResult.ClusterInfo

model.proto:394

Information about a single cluster for clustering model.

Used in: IterationResult

message Model.TrainingRun.TrainingOptions

model.proto:305

Used in: TrainingRun

message ModelReference

model_reference.proto:28

Id path of a model.

Used in: Model

message StandardSqlDataType

standard_sql.proto:37

The type of a variable, e.g., a function argument. Examples: INT64: {type_kind="INT64"} ARRAY<STRING>: {type_kind="ARRAY", array_element_type="STRING"} STRUCT<x STRING, y ARRAY<DATE>>: {type_kind="STRUCT", struct_type={fields=[ {name="x", type={type_kind="STRING"}}, {name="y", type={type_kind="ARRAY", array_element_type="DATE"}} ]}}

Used in: StandardSqlField

enum StandardSqlDataType.TypeKind

standard_sql.proto:38

Used in: StandardSqlDataType

message StandardSqlField

standard_sql.proto:98

A field or a column.

Used in: Model, StandardSqlStructType

message StandardSqlStructType

standard_sql.proto:108

Used in: StandardSqlDataType