package yggdrasil_decision_forests.model.proto

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message AbstractModel

abstract_model.proto:52

Contains the same information as a model::AbstractModel (without the data_spec field).

Used in: SerializedModel

message DeploymentConfig

abstract_learner.proto:32

Specification of the computing resources used to perform an action (e.g. train a model, run a cross-validation, generate predictions). The deployment configuration does not impact the results (e.g. learned model). If not specified, more consumer will assume local computation with multiple threads.

Next ID: 9

Used in: distributed_gradient_boosted_trees.proto.WorkerWelcome, generic_worker.proto.Request.TrainModel, hyperparameters_optimizer_v2.proto.HyperParametersOptimizerLearnerTrainingConfig, multitasker.proto.MultitaskerTrainingConfig

message DeploymentConfig.Local

abstract_learner.proto:83

Used in: DeploymentConfig

(message has no fields)

message FeatureSelectionLogs

abstract_model.proto:167

Used in: AbstractModel

message FeatureSelectionLogs.Iteration

abstract_model.proto:169

Logs of a feature selection algorithm.

Used in: FeatureSelectionLogs

message GenericHyperParameterSpecification

hyperparameter.proto:67

Definition of the type, possible values and default values of the generic hyper parameters of a learner. Also contains some documentation (free text + links).

message GenericHyperParameterSpecification.Conditional

hyperparameter.proto:144

Conditional existence of a parameter. A parameter exist iff. the other parameter "control_field" satisfy "constraint".

Used in: Value

message GenericHyperParameterSpecification.Conditional.Categorical

hyperparameter.proto:154

Used in: Conditional

message GenericHyperParameterSpecification.LearnerDocumentation

hyperparameter.proto:160

Documentation about the entire learner.

Used in: GenericHyperParameterSpecification

message GenericHyperParameterSpecification.Value

hyperparameter.proto:75

Used in: GenericHyperParameterSpecification

message GenericHyperParameterSpecification.Value.Categorical

hyperparameter.proto:93

Categorical hyper parameter i.e. the hyper parameter takes a values from a set of possible values.

Used in: Value

message GenericHyperParameterSpecification.Value.CategoricalList

hyperparameter.proto:99

List of categorical values.

Used in: Value

(message has no fields)

message GenericHyperParameterSpecification.Value.Documentation

hyperparameter.proto:116

Links to the documentation of the hyper-parameter.

Used in: Value

message GenericHyperParameterSpecification.Value.Integer

hyperparameter.proto:102

Integer hyper parameter.

Used in: Value

message GenericHyperParameterSpecification.Value.MutuallyExclusivityCondition

hyperparameter.proto:130

Used in: Value

message GenericHyperParameterSpecification.Value.Real

hyperparameter.proto:109

Real hyper parameter.

Used in: Value

message GenericHyperParameters

hyperparameter.proto:33

Generic hyper parameters of a learner. Learner hyper parameters are normally provided through the "TrainingConfig" proto extended by each learner. The "Generic hyper parameters" (the following message) is a parallel solution to specify the hyper parameters of a learner using a list of key-values. The "Generic hyper parameters" are designed for the interfacing with hyper-parameter optimization algorithms, while the "TrainingConfig" proto is designed for direct user input. For this reason, the generic hyper parameters are not guaranteed to be as expressive as the "TrainingConfig". However, the default values of the "Generic hyper parameters" are guaranteed to be equivalent to the default value of the training config.

Used in: generic_worker.proto.Request.TrainModel, HyperparametersOptimizerLogs, HyperparametersOptimizerLogs.Step, PredefinedHyperParameterTemplate

message GenericHyperParameters.Field

hyperparameter.proto:41

Used in: GenericHyperParameters

message GenericHyperParameters.Value

hyperparameter.proto:48

Used in: Field, HyperParameterSpace.DiscreteCandidates

message GenericHyperParameters.Value.CategoricalList

hyperparameter.proto:58

Used in: Value

message HyperParameterSpace

hyperparameter.proto:167

Set of hyper-parameter-sets aka. hyper-parameter search space.

Used in: hyperparameters_optimizer_v2.proto.HyperParametersOptimizerLearnerTrainingConfig, HyperparametersOptimizerLogs

message HyperParameterSpace.DiscreteCandidates

hyperparameter.proto:191

Used in: Field

message HyperParameterSpace.Field

hyperparameter.proto:170

Used in: HyperParameterSpace

message HyperparametersOptimizerLogs

abstract_model.proto:136

Used in: AbstractModel

message HyperparametersOptimizerLogs.Step

abstract_model.proto:153

Used in: HyperparametersOptimizerLogs

message LearnerCapabilities

abstract_learner.proto:242

"Capabilities" of a learner. Describe the capabilities/constraints/properties of a learner (all called "capabilities"). Capabilities are non-restrictive i.e. enabling a capability cannot restrict the domain of use of a learner/model (i.e. use "support_tpu" instead of "require_tpu"). Using a learner with non-available capabilities raises an error.

message Metadata

abstract_model.proto:100

Information about the model.

Used in: AbstractModel, TrainingConfig

message Metadata.CustomField

abstract_model.proto:114

Used in: Metadata

message MonotonicConstraint

abstract_learner.proto:280

Monotonic constraints between model's output and numerical input features.

Used in: PerColumn, TrainingConfig

enum MonotonicConstraint.Direction

abstract_learner.proto:286

Used in: MonotonicConstraint

message PerColumn

abstract_learner.proto:297

Used in: TrainingConfigLinking

message PredefinedHyperParameterTemplate

abstract_learner.proto:220

Returns a list of hyper-parameter sets that outperforms the default hyper-parameters (either generally or in specific scenarios). Like default hyper-parameters, existing pre-defined hyper-parameters cannot change.

message Prediction

prediction.proto:29

Generic prediction (prediction over a single example). Those are usually the output of a ML model. Optionally, it may contains the ground truth (e.g. the label value). When the ground truth is present, such a "Prediction" proto can be used for evaluation (see "metric.h").

Used in: metric.proto.EvaluationResults, utils.model_analysis.proto.FeatureVariationItem.Bin, utils.model_analysis.proto.PredictionAnalysisResult

message Prediction.AnomalyDetection

prediction.proto:74

Used in: Prediction

message Prediction.Classification

prediction.proto:30

Used in: Prediction

message Prediction.Ranking

prediction.proto:44

Used in: Prediction

message Prediction.Regression

prediction.proto:39

Used in: Prediction

message Prediction.Uplift

prediction.proto:54

Used in: Prediction

message SerializedModel

abstract_model.proto:183

Proto used to serialize / deserialize the model to / from string. See "SerializeModel" and "DeserializeModel". This message does not contains the entire model data.

enum Task

abstract_model.proto:24

Modeling task.

Used in: metric.proto.EvaluationOptions, metric.proto.EvaluationResults, AbstractModel, TrainingConfig, utils.model_analysis.proto.PredictionAnalysisResult, utils.model_analysis.proto.StandaloneAnalysisResult

message TrainingConfig

abstract_learner.proto:89

Training configuration. Contains all the configuration for the training of a model e.g. label, input features, hyper-parameters.

Next ID: 13

Used in: example.proto.Request, distributed_gradient_boosted_trees.proto.WorkerWelcome, generic_worker.proto.Request.TrainModel, hyperparameters_optimizer_v2.proto.HyperParametersOptimizerLearnerTrainingConfig, multitasker.proto.MultitaskerTrainingConfig, multitasker.proto.SubTask

message TrainingConfigLinking

abstract_learner.proto:186

Resolution column string names into column indices. The column indies are defined in a given dataspec e.g. If dataspec.columns[5].name = "toto", then the column idx of "toto" is 5.

Used in: distributed_gradient_boosted_trees.proto.WorkerWelcome

message VariableImportance

abstract_model.proto:123

Description of the importance of a given attribute. The semantic of "importance" is variable.

Next ID: 3

Used in: VariableImportanceSet, random_forest.proto.Header

message VariableImportanceSet

abstract_model.proto:130

Next ID: 2

Used in: AbstractModel, utils.model_analysis.proto.AnalysisResult