package yggdrasil_decision_forests.utils.proto

Mouse Melon logoGet desktop application:
View/edit binary Protocol Buffers messages

message FoldGenerator

fold_generator.proto:21

Configuration for the generation of training and testing folds.

message FoldGenerator.CrossValidation

fold_generator.proto:67

Split the dataset into n folds (n=10 by default). Then, for each subset of n-1 folds, train a model and evaluate it on the remaining folds. This methods is called "cross-validation". Cross-validation is more expensive (n models need to be trained) than "train and test" but the results are more precise.

Used in: FoldGenerator

message FoldGenerator.FoldGroup

fold_generator.proto:41

Specify the "fold group" of each example. If specified, all the examples of the same group will appear in the same fold. In other words, each group will either be entirely used for training or for testing. There should be at least as much groups as there are folds.

Used in: CrossValidation

message FoldGenerator.NoTraining

fold_generator.proto:92

Does not train the model and evaluate on the entire dataset. This solution only make sense when the candidate method are all defined as pre-computed predictions or pre-computed models.

Used in: FoldGenerator

(message has no fields)

message FoldGenerator.PrecomputedCrossValidation

fold_generator.proto:95

Cross-validation of folds computed externally.

Used in: FoldGenerator

message FoldGenerator.TestOnOtherDataset

fold_generator.proto:84

Evaluate the candidate model on a separate dataset. The entire dataset specified in "TrainEvaluateCompareOptions" will be used for training. The entire dataset specified in "TestOnOtherDataset" will be used for testing.

Used in: FoldGenerator

message FoldGenerator.TrainTest

fold_generator.proto:54

Split the dataset in two folds. The first part will be used for training. The second part will be used for evaluation. This method is commonly called "Train and test" evaluation. This method is fast (only one model is trained) but the results are noisy (both with training noise and testing noise).

Used in: FoldGenerator

message IntegerDistributionDouble

distribution.proto:31

Represents the (discrete) probability distribution of a random variable with natural (i.e. integer greater of equal to zero) support: counts[i]/sum is the probability of observation of i.

Used in: model.decision_tree.proto.LabelStatistics.Classification, model.decision_tree.proto.NodeClassifierOutput

message IntegerDistributionFloat

distribution.proto:38

Used in: model.proto.Prediction.Classification, PartialDependencePlotSet.PartialDependencePlot.LabelAccumulator

message IntegerDistributionInt64

distribution.proto:45

message IntegersConfusionMatrixDouble

distribution.proto:63

Confusion matrix between two integer distributions.

Used in: metric.proto.EvaluationResults.Classification, model.gradient_boosted_trees.proto.TrainingLogs.Entry

message NormalDistributionDouble

distribution.proto:53

Describe a 1d normal distribution.

Used in: model.decision_tree.proto.LabelStatistics.Regression, model.decision_tree.proto.LabelStatistics.RegressionWithHessian, model.decision_tree.proto.NodeRegressorOutput

message PartialDependencePlotSet

partial_dependence_plot.proto:27

Message for the metrics required to compute a partial dependence plot for multiple features or sets of features. This message is also used to store Conditional Expectancy Plots.

Used in: model_analysis.proto.AnalysisResult

message PartialDependencePlotSet.PartialDependencePlot

partial_dependence_plot.proto:30

Message for metrics required to compute a partial dependence plot for ONE feature or ONE set of features.

Used in: PartialDependencePlotSet

message PartialDependencePlotSet.PartialDependencePlot.AttributeInfo

partial_dependence_plot.proto:76

Used in: PartialDependencePlot

enum PartialDependencePlotSet.PartialDependencePlot.AttributeInfo.Scale

partial_dependence_plot.proto:93

Used in: AttributeInfo

message PartialDependencePlotSet.PartialDependencePlot.Bin

partial_dependence_plot.proto:60

Represents the metrics for a feature OR set of features at a particular value (Represented by attribute_values).

Used in: PartialDependencePlot

message PartialDependencePlotSet.PartialDependencePlot.EvaluationAccumulator

partial_dependence_plot.proto:51

Represent the accumulation of evaluation metrics.

Used in: Bin

message PartialDependencePlotSet.PartialDependencePlot.LabelAccumulator

partial_dependence_plot.proto:33

Represents the "sum" of a set of labels, either predicted by the model, or the ground truth.

Used in: Bin

enum PartialDependencePlotSet.PartialDependencePlot.Type

partial_dependence_plot.proto:103

Used in: PartialDependencePlot

message ShardedMultiBitmapHeader

bitmap.proto:21

Header attached to an exported sharded multi-bitmap.